Toggle light / dark theme

The observation of a chemical reaction at the molecular level in real time is a central theme in experimental chemical physics. An international research team has captured roaming molecular fragments for the first time. The work, under the supervision of Heide Ibrahim, research associate at the Institut national de la recherche scientifique (INRS), was published in the journal Science.

The research group of the Énergie Matériaux Télécommunications Research Centre of INRS, with support of Professor François Légaré, has used the Advanced Laser Light Source (ALLS). They have succeeded in shooting the first molecular film of “roamers”—hydrogen fragments, in this case—that orbit around HCO fragments) during a chemical reaction by studying the photo-dissociation of formaldehyde, H2CO.

For decades, one material has so dominated the production of computer chips and transistors that the tech capital of the world—Silicon Valley—bears its name. But silicon’s reign may not last forever.

MIT researchers have found that an alloy called InGaAs (indium gallium arsenide) could hold the potential for smaller and more energy efficient . Previously, researchers thought that the performance of InGaAs transistors deteriorated at small scales. But the new study shows this apparent deterioration is not an intrinsic property of the material itself.

The finding could one day help push computing power and efficiency beyond what’s possible with silicon. “We’re really excited,” said Xiaowei Cai, the study’s lead author. “We hope this result will encourage the community to continue exploring the use of InGaAs as a channel material for transistors.”

Ever wondered if your urine could help with food security in Africa? We go to Malawi this week to hear how a ‘magic liquid’ is helping farmers cope with the high cost of synthetic fertilisers, while keeping the marketplaces cleaner and smelling fresher.

Space manifolds form the boundaries of dynamic channels to provide fast transport to the innermost and outermost reaches of the solar system. Such features are an important element in spacecraft navigation and mission design, providing a window to the apparently erratic nature of comets and their trajectories. In a new report now published on Science Advances, Nataša Todorović and a team of researchers in Serbia and the U.S. revealed a notable and unexpected ornamental structure of manifolds in the solar system. This architecture was connected in a series of arches spreading from the asteroid belt to Uranus and beyond. The strongest manifolds were found linked to Jupiter with profound control on small bodies across a wide and previously unknown range of three-body energies. The orbits of these manifolds encountered Jupiter on rapid time-scales to transform into collisional or escaping trajectories to reach Neptune’s distance merely within a decade. In this way, much like a celestial highway, all planets generate similar manifolds across the solar system for fast transport throughout.

Navigating chaos in the solar system

In this work, Todorović et al. used fast Lyapunov indicator (FLI); a dynamic quantity used to detect chaos, to detect the presence and global structure of space manifolds. They captured the instabilities acting on orbital time scales with the sensitive and well-established numerical tool to define regions of fast transport in the solar system. Chaos in the solar system is inextricably linked to the stability or instability of manifolds forming intricate structures whose mutual interaction can enable chaotic transport. The general properties can be described relative to the planar, circular and restricted three-body problem (PCR3BP) approximating the motion of natural and artificial celestial bodies. While this concept is far from being fully understood, modern geometric insights have revolutionized spacecraft design trajectories and helped build new space-based astronomical observatories to transform our understanding of the cosmos.

At a time when more companies are building machine learning models, Arthur.ai wants to help by ensuring the model accuracy doesn’t begin slipping over time, thereby losing its ability to precisely measure what it was supposed to. As demand for this type of tool has increased this year, in spite of the pandemic, the startup announced a $15 million Series A today.

The investment was led by Index Ventures with help from newcomers Acrew and Plexo Capital, along with previous investors Homebrew, AME Ventures and Work-Bench. The round comes almost exactly a year after its $3.3 million seed round.

As CEO and co-founder Adam Wenchel explains, data scientists build and test machine learning models in the lab under ideal conditions, but as these models are put into production, the performance can begin to deteriorate under real-world scrutiny. Arthur.ai is designed to root out when that happens.

Mojo Vision has developed prototypes for contact lenses that enable people to see augmented reality images as overlays on the real world. And now it has teamed up with Menicon, Japan’s largest and oldest maker of contact lenses, to further develop the product.

Saratoga, California-based Mojo Vision has developed a smart contact lens with a tiny built-in display that lets you view augmented reality images on a screen sitting right on your eyeballs. It’s a pretty amazing innovation, but the company has to make sure that it works with contact lenses as they have been built for decades. The partnership with Menicon will help the company do that, Mojo Vision chief technology officer Mike Wiemer said in an interview with VentureBeat.

“It’s a development agreement, and it could turn into a commercial agreement,” Wiemer said. “I’m very excited to work with them.”