Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Researchers demonstrate vaccination approach in mice that could prevent future coronavirus outbreaks

Researchers in Japan have developed a vaccination strategy in mice that promotes the production of antibodies that can neutralize not only SARS-CoV-2 but a broad range of other coronaviruses as well. If successfully translated to humans, the approach, to be published October 8 in the Journal of Experimental Medicine, could lead to the development of a next-generation vaccine capable of preventing future coronavirus pandemics.

The SARS-CoV-2 virus responsible for COVID-19 enters human cells by using its to bind to a called ACE2. The receptor-binding domain of the spike protein consists of two parts: a “core” region that is very similar in all coronaviruses, and a more specialized “head” region that mediates binding to ACE2.

Antibodies that recognize the head region of the spike receptor-binding domain can block the entry of SARS-CoV-2 into cells but offer little protection against other coronaviruses, such as the SARS-CoV-1 virus responsible for the severe acute respiratory syndrome outbreak of 2002. Antibodies that recognize the core region of the spike receptor-binding domain, in contrast, can prevent the entry of various coronaviruses into . Unfortunately, however, individuals exposed to the viral spike protein tend to produce lots of against the head region but few, if any, antibodies that recognize the core region.

Jeffrey Shainline: Neuromorphic Computing and Optoelectronic Intelligence | Lex Fridman Podcast #225

Jeffrey Shainline is a physicist at NIST. Please support this podcast by checking out our sponsors:
- Stripe: https://stripe.com.
- Codecademy: https://codecademy.com and use code LEX to get 15% off.
- Linode: https://linode.com/lex to get $100 free credit.
- BetterHelp: https://betterhelp.com/lex to get 10% off.

Note: Opinions expressed by Jeff do not represent NIST.

EPISODE LINKS:
Jeff’s Website: http://www.shainline.net.
Jeff’s Google Scholar: https://scholar.google.com/citations?user=rnHpY3YAAAAJ
Jeff’s NIST Page: https://www.nist.gov/people/jeff-shainline.

PODCAST INFO:
Podcast website: https://lexfridman.com/podcast.
Apple Podcasts: https://apple.co/2lwqZIr.
Spotify: https://spoti.fi/2nEwCF8
RSS: https://lexfridman.com/feed/podcast/
Full episodes playlist: https://www.youtube.com/playlist?list=PLrAXtmErZgOdP_8GztsuKi9nrraNbKKp4
Clips playlist: https://www.youtube.com/playlist?list=PLrAXtmErZgOeciFP3CBCIEElOJeitOr41

OUTLINE:
0:00 — Introduction.
0:44 — How are processors made?
20:02 — Are engineers or physicists more important.
22:31 — Super-conductivity.
38:18 — Computation.
42:55 — Computation vs communication.
46:36 — Electrons for computation and light for communication.
57:19 — Neuromorphic computing.
1:22:11 — What is NIST?
1:25:28 — Implementing super-conductivity.
1:33:08 — The future of neuromorphic computing.
1:52:41 — Loop neurons.
1:58:57 — Machine learning.
2:13:23 — Cosmological evolution.
2:20:32 — Cosmological natural selection.
2:37:53 — Life in the universe.
2:45:40 — The rare Earth hypothesis.

SOCIAL: