Toggle light / dark theme

If you want to live long enough to see a reversal of aging and everlasting youth, exercise should be at the core of your routine.

Here I look at ten amazing benefits that exercise brings to your body and mind, so if you haven’t already got a regime on the go, hopefully this will convince you to start now.

Have an amazing day 🙂


Fast spinning black holes could have features different from those predicted by general relativity.


General relativity is a profoundly complex mathematical theory, but its description of black holes is amazingly simple. A stable black hole can be described by just three properties: its mass, its electric charge, and its rotation or spin. Since black holes aren’t likely to have much charge, it really takes just two properties. If you know a black hole’s mass and spin, you know all there is to know about the black hole.

This property is often summarized by the no-hair theorem. Specifically, the theorem asserts that once matter falls into a black hole, the only characteristic that remains is mass. You could make a black hole out of a Sun’s worth of hydrogen, chairs, or those old copies of National Geographic from Grandma’s attic, and there would be no difference. Mass is mass as far as general relativity is concerned. In every case the event horizon of a black hole is perfectly smooth, with no extra features. As Jacob Bekenstein said, black holes have no hair.

But with all its predictive power, general relativity has a problem with quantum theory. This is particularly true with black holes. If the no-hair theorem is correct, the information held within an object is destroyed when it crosses the event horizon. Quantum theory says that information can never be destroyed. So the valid theory of gravity is contradicted by the valid theory of the quanta. This leads to problems such as the firewall paradox, which can’t decide whether an event horizon should be hot or cold.

Researchers at Pohang University of Science and Technology (POSTECH) and Seoul National University in South Korea have demonstrated a new way to enhance the energy efficiency of a non-volatile magnetic memory device called SOT-MRAM. Published in Advanced Materials, this finding opens up a new window of exciting opportunities for future energy-efficient magnetic memories based on spintronics.

In modern computers, the (RAM) is used to store information. The SOT-MRAM (spin-orbit torque magnetic RAM) is one of the leading candidates for the next-generation memory technologies that aim to surpass the performance of various existing RAMs. The SOT-MRAM may operate faster than the fastest existing RAM (SRAM) and maintain information even after the electric is powered off whereas all fast RAMs existing today lose information as soon as the supply is powered off. The present level of the SOT-MRAM technology falls short of being satisfactory, however, due to its high energy demand; it requires large energy supply (or large current) to write information. Lowering the energy demand and enhancing the energy efficiency is an outstanding problem for the SOT-MRAM.

In the SOT-MRAM, magnetization directions of tiny magnets store information and writing amounts to change the magnetization directions to desired directions. The magnetization direction change is achieved by a special physics phenomenon called SOT that modifies the magnetization direction when a current is applied. To enhance the energy efficiency, soft magnets are ideal material choice for the tiny magnets since their magnetization directions can be easily alterned by a small current. Soft magnets are bad choice for the safe storage of information since their magnetization direction may be altered even when not intended—due to thermal noise or other noise. For this reason, most attempts to build the SOT-MRAM adopt hard magnets, because they magnetize very strongly and their magnetization direction is not easily altered by noise. But this material choice inevitably makes the energy efficiency of the SOT-MRAM poor.

To the moon — from dream to reality | space documentary.

Between 1969 and 1972 twelve men walked on the surface of the moon. It was seen as the first chapter in an ambitious program of space exploration. But what started with NASA’s Apollo missions ended with the Apollo missions. Humanity’s boldest venture is now 50 years in the past. To The Moon — From Dream To Reality looks back at the people and the technology of the Apollo era.

Subscribe Free Documentary Channel for free: https://bit.ly/2YJ4XzQ
Facebook: https://bit.ly/2QfRxbG
Twitter: https://bit.ly/2QlwRiI

▬▬▬▬▬▬▬▬▬

This week at NASA:

👨‍🚀 Vice President Mike Pence announced NASA’s Artemis Program astronauts.
🛰 SpaceX’s updated cargo Dragon docked with the International Space Station.
🌊 Sentinel-6 sent back its first sea measurements.
🚀 NASA’s Space Launch System rocket updates.
🔬 #Artemis III science priorities.

Take a look at these stories and more: https://go.nasa.gov/3gFa6U7