Toggle light / dark theme

New technique could be useful for quantum information processing.


A new technique to cool reactive molecules to temperatures low enough to achieve quantum degeneracy – something not generally possible before – has been created by researchers in the US. In this temperature regime, the dominance of quantum effects over thermal fluctuations should allow researchers to study new quantum properties of molecules. As a first example, the researchers demonstrated how a slight change in applied electric field can alter the reaction rate between molecules by three orders of magnitude. The researchers hope their platform will enable further exploration of molecular quantum degeneracy, with potential applications ranging from quantum many body physics to quantum information processing.

When atoms are cooled close to absolute zero, the blur created by thermal effects that govern their behaviour in the classical world around us is removed, making their quantum nature clear. This has led to some fascinating discoveries. In ultracold quantum bosonic or fermion-pair quantum gases, for example, all the atoms in a trap can simultaneously occupy the quantum ground state, resulting in a wavefunction that is macroscopic.

Cooling and trapping molecules is much trickier because they are inherently more complex than atoms. Whereas atoms can only contain quanta of energy in electronic excitations, the chemical bonds in molecules can stretch, rotate and bend – and cooling molecules involves removing energy from all of these degrees of freedom. Moreover, the complexity of molecules increases the complexity of their collisions. Although elastic collisions are necessary to knock the fastest-moving molecules out of a trap and cool it, inelastic collisions dissipate heat in the trap.

“What our technology does is it improves range and lowers vehicle cost,” Campbell said. “It’s as simple as that.”

As the name of his company suggests, Campbell thinks the key is a more-solid electric car battery. The lithium-ion batteries powering almost all of today’s electric vehicles rely on a liquid electrolyte, which ferries charged ions from a cathode to an anode. While the technology makes it practical to charge and recharge, the liquid can catch fire if overloaded.

For decades, scientists have seen a potential answer in solid electrolytes, which could allow a battery to soak up more energy without overheating.

When one mentions the topic of “head transplantation” (or a related topic – the “brain transplant”), for most people, it remains a topic purely in the context and sphere of science fiction.

Yet most people are unaware of the following history:

In 1908, Nobel Prize winner Alexis Carrel, a French surgeon who had developed surgical methods to connect blood vessels in the context of organ transplantation, collaborated with the American Charles Claude Guthrie perform the first head grafts between dogs.

In 1954, Vladimir Demikhov, a Soviet surgeon who conducted important work to improve coronary bypass surgery, performed experiments in which he grafted a dog’s head and upper body, onto another dog; the effort was focused on how to provide blood supply to the donor head and upper body.

The idea that mass extinctions allow many new types of species to evolve is a central concept in evolution, but a new study using artificial intelligence to examine the fossil record finds this is rarely true, and there must be another explanation.

Charles Darwin’s landmark opus, On the Origin of the Species, ends with a beautiful summary of his theory of evolution, “There is a grandeur in this view of life, with its several powers, having been originally breathed into a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.”

In fact, scientists now know that most species that have ever existed are extinct. This extinction of species has on the whole been roughly balanced by the origination of new ones over Earth’s history, with a few major temporary imbalances scientists call mass extinction events. Scientists have long believed that mass extinctions create productive periods of species evolution, or “radiations,” a model called “creative destruction.” A new study led by scientists affiliated with the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology used machine learning to examine the co-occurrence of fossil species and found that radiations and extinctions are rarely connected, and thus mass extinctions likely rarely cause radiations of a comparable scale.

Hey it’s Han from WrySci HX with Part 2 of a four part series on sleep and brain computer interfaces such as Neuralink. We’ll look at what we know about sleep and how BCIs might be able to help us in the future, 2021 and beyond. This isn’t a topic I’ve seen much about so I decided to see what was up. This second part is on sleep regulation (aka how we fall asleep, and hopefully how we can fall asleep more easily in the future) and sleeping with only certain parts of the brain, while the next ones will cover sleep and dream theories. More below ↓↓↓

Watch Part 1 here! https://youtu.be/EmtlanXdGf4

Subscribe! =]

Please consider supporting 🙏