Toggle light / dark theme

One step closer to a light into matter molecular synthesizer: 3.


Molecular machine-track conjugate 1 (Figure 1) was designed to use iterative Wittig reactions to form carbon-carbon double bonds between a macrocycle and building blocks abstracted one at a time and in sequence from a track. The Wittig reaction 24, 25, 26 was chosen as it is robust and structurally tolerant, lending itself to exploitation in a range of contexts, including dynamic DNA-template synthesis.9 Our machine is based on a rotaxane architecture, in which the macrocycle has a reactive aldehyde attachment and the axle has the building-block sequence encoded as phosphonium salts during its synthesis. The 2, 2-diphenylpropane phosphonium units act both to restrict the position of the ring on the track and, upon deprotonation, as reactive ylide functionalities. Each ylide is large enough to block the passage of the macrocycle, trapping the ring within a compartment defined by the bulky stopper at the terminus of original threading and the next ylide along the track. Once a reactive building block can be reached by the macrocycle-appended aldehyde, it can be removed from the track through a Wittig reaction that adds it to the terminus of the growing chain. Each barrier also contains an aldehyde unit, so that once the building block is added to the end of the chain, it is able to react with the next barrier on the track that the macrocycle can access, enabling the alkene-connected oligomer to grow through successive Wittig reactions.

The specific size and constitution of the 2, 2-diphenylpropane motif of the building blocks proved important for successful machine operation. Early track designs in which the ylide and aldehyde were attached to the same aromatic ring or extended conjugated system proved insufficiently reactive (see Section S7 for a brief discussion of initial designs). Embedding the phosphorus atoms within the vector of the track allowed synthetically accessible triaryl phosphines to be the basis of the track design, expediting the synthesis (see Sections S2 and S3). The phenyl substituent at each phosphorus center (e.g., 4a–4D) also proved important: when a tolyl (4-methylphenyl) linking group was investigated, it proved difficult to develop macrocycles that could both thread during the rotaxane-forming reaction and, subsequently, pass over the phosphine oxide in the track formed from the Wittig reaction.

Each phosphorus center is attached to a methylene group bearing a diarylpropane building block derivatized with a different pair of substituents (H, Ph, C6H4CH2CHMe2, or C6H4OMe). These provide different sidechains in the machine product, the same role that different amino acids play in proteins. However, two (identical) sidechains are present per monomer using this artificial molecular machine design compared with one sidechain per amino acid in proteins. This was chosen partly to illustrate how artificial machines and their products are not subject to the same constraints as biomolecular synthesizers but, conveniently, the symmetry of the building blocks also makes their synthesis more straightforward. Each phosphonium moiety is separated from the next by rigid spacers that prevent folding of the track and so ensure that the phosphonium salts can only react with the aldehyde group at the end of the chain attached to the macrocycle rather than others on the track.

O,.o.


Google will use large batteries to replace the diesel generators at one of its data centers in Belgium, describing the project as a first step towards using cleaner technologies to provide backup power for its millions of servers around the world.

“Our project in Belgium is a first step that we hope will lay the groundwork for a big vision: a world in which backup systems at data centers go from climate change problems to critical components in carbon-free energy systems,” said Joe Kava, Vice President for Data Centers at Google. “We’re aiming to demonstrate that a better, cleaner solution has advanced far enough to keep the internet up and running.”

Google becomes the second major hyperscale cloud operator to pursue a strategy to move beyond diesel generators. In July, Microsoft said it will eliminate its reliance on diesel fuel by the year 2030 and has begun testing hydrogen fuel cells as an alternative. These announcements have implications beyond company-built facilities, as Google and Microsoft are major tenants in third-party data centers, most of which use diesel generators for backup power.

Pancreatic cancer is one of the most dangerous forms of tumors due to its aggressive growth, early metastases, and poor response to any known therapeutic treatments. Being a fourth major cause of cancer death nowadays and with foresight to become a second cause of cancer death after lung cancer by 2030, there is an urgent need in new therapeutic strategies that might improve the disease outcome.1 Recently, a growing interest in the anticancer activity of cannabinoids has led to numerous studies that cover more and more types of cancer.2, 3 Natural and synthetic cannabinoids have shown the capability to influence proliferation, migration, and apoptosis of cancer cells by both direct and indirect activation of cannabinoid receptors CB1 and CB2. In pancreatic cancer, the amount of CB1 and CB2 receptors expression in tumor cells was shown to be significantly higher than that in normal cells, opening a path for utilizing cannabinoids’ anticancer capabilities to kill cancer cells without affecting normal pancreatic tissue.


Journal dedicated to the clinical, translational and basic science of malignancies of the pancreas and peripancreatic region.

Tests showed that the material was able to store energy for more than four months.

“Free” Energy

“The material functions a bit like phase change materials, which are used to supply heat in hand warmers,” Lancaster University senior lecturer John Griffin, co-author of a paper about the research published in the journal Chemistry of Materials, said in a statement.

The Washington Post linked the hack, which occurred over the weekend, to a group working for the Russian foreign intelligence service.

The FBI is currently investigating the group, known among private-sector cybersecurity firms as APT29 or Cozy Bear. The hackers are also believed to have breached the State Department, Joint Chiefs of Staff and the White House networks during the Obama administration.

The latest revelation comes less than a month after President Donald Trump fired Christopher Krebs, the nation’s top cybersecurity official.

However, a breakthrough by researchers at UVA’s College and Graduate School of Arts & Sciences, the California Institute of Technology and the U.S. Department of Energy’s Argonne National Laboratory, Lawrence Berkeley National Laboratory and Brookhaven National Laboratory could eliminate a critical obstacle from the process, a discovery that represents a giant stride toward a clean-energy future.

One way to harness solar energy is by using solar electricity to split water molecules into oxygen and hydrogen. The hydrogen produced by the process is stored as fuel, in a form that can be transferred from one place to another and used to generate power upon demand. To split water molecules into their component parts, a catalyst is necessary, but the catalytic materials currently used in the process, also known as the oxygen evolution reaction, are not efficient enough to make the process practical.

We all know you thought about it and we’ve though about it. Now we are going to do it. RC vs Supercars is a new segment we started and hopefully takes off depending on the success of this video.

What’s more exciting than racing? We pitted the Lp550-2 against our Badass Mad Drift and let them loose on a 300+ feet runway.

Want to see more? Like and share this video to help support more videos.

Check out the Mad Drift here: http://bit.ly/SyUaA1

How electrons move together as a group inside cylindrical nanoparticles?

Scientists from the University of Exeter seems to find out the answer to this question. They even have made a breakthrough in the field of electromagnetism, with perspectives for metamaterials research.

In collaboration with the University of Strasbourg, scientists hypothesized how electrons move collectively in tiny metal nanoparticles shaped like cylinders.

THE FINANCE industry has had a long and profitable relationship with computing. It was an early adopter of everything from mainframe computers to artificial intelligence (see timeline). For most of the past decade more trades have been done at high frequency by complex algorithms than by humans. Now big banks have their eyes on quantum computing, another cutting-edge technology.


A fundamentally new kind of computing will shake up finance—the question is when.

Finance & economics Dec 19th 2020 edition.