Toggle light / dark theme

A team of Johns Hopkins University researchers has developed a new software that could revolutionize how DNA is sequenced, making it far faster and less expensive to map anything from yeast genomes to cancer genes.

The , detailed in a paper published in Nature Biotechnology, can be used with portable sequencing devices to accelerate the ability to conduct genetic tests and deliver diagnoses outside of labs. The new technology targets, collects and sequences without sample preparation and without having to map surrounding genetic material like standard methods require.

“I think this will forever change how DNA sequencing is done,” said Michael C. Schatz, a Bloomberg Distinguished Associate Professor of Computer Science and Biology and senior author of the paper.

Summary: Artificial intelligence technology redesigned a bacterial protein that helps researchers track serotonin in the brain in real-time.

Source: NIH

Serotonin is a neurochemical that plays a critical role in the way the brain controls our thoughts and feelings. For example, many antidepressants are designed to alter serotonin signals sent between neurons.

In an article in Cell, National Institutes of Health-funded researchers described how they used advanced genetic engineering techniques to transform a bacterial protein into a new research tool that may help monitor serotonin transmission with greater fidelity than current methods. Preclinical experiments, primarily in mice, showed that the sensor could detect subtle, real-time changes in brain serotonin levels during sleep, fear, and social interactions, as well as test the effectiveness of new psychoactive drugs.

Just in time for the Christmas holiday, Emotet is sending the gift of Trickbot.

After a lull of nearly two months, the Emotet botnet has returned with updated payloads and a campaign that is hitting 100, 000 targets per day.

Emotet started life as a banking trojan in 2014 and has continually evolved to become a full-service threat-delivery mechanism. It can install a collection of malware on victim machines, including information stealers, email harvesters, self-propagation mechanisms and ransomware. It was last seen in volume in October, targeting volunteers for the Democratic National Committee (DNC); and before that, it became active in July after a five-month hiatus, dropping the Trickbot trojan. Before that, in February, it was seen in a campaign that sent SMS messages purporting to be from victims’ banks.

The distorted galaxy gets its elegant look thanks to the phenomenon of gravitational lensing.

What we’re really seeing is a unique, lucky view of distant GAL-CLUS-022058s, which is far beyond the elliptical galaxy at the center of this shot. As the light from GAL-CLUS-02258s streams past the closer elliptical, the latter galaxy’s gravity bends in the path of the passing light, amplifying and distorting it into the view we see here.

“Once they are ingested, up to 90% of the plastic fragments that reach the intestine are excreted. However, one part is fragmented into nanoplastics which are capable, due to their small size and molecular properties, to penetrate the cells and cause harmful effects. The study establishes that alterations in food absorption have been described, as well as inflammatory reactions in the intestinal walls, changes in the composition and functioning of the gut microbiome, effects on the body’s metabolism and ability to produce, and lastly, alterations in immune responses. The article alerts about the possibility of a long-term exposure to plastic, accumulated throughout generations, could give way to unpredictable changes even in the very genome, as has been observed in some animal models.”


We live in a world invaded by plastic. Its role as a chemically stable, versatile and multi-purpose fostered its massive use, which has finally translated into our current situation of planetary pollution. Moreover, when plastic degrades it breaks into smaller micro and nanoparticles, becoming present in the water we drink, the air we breathe and almost everything we touch. That is how nanoplastics penetrate the organism and produce side effects.

A revised study led by the Universitat Autónoma de Barcelona (UAB), the CREAF and the Centre for Environmental and Marine Studies (CESAM) at the University of Aviero, Portugal, and published in the journal Science Bulletin, verifies that the nanoplastics affect the composition and diversity of our intestinal microbiome and that this can cause damage to our health. This effect can be seen in both vertebrates and invertebrates, and has been proved in situations in which the exposure is widespread and prolonged. Additionally, with alteration of the gut microbiome come alterations in the immune, endocrine and and therefore, although not enough is known about the specific physiological mechanisms, the study alerts that stress to the gut microbiome could alter the health of humans.

The health effects of being exposed to nanoplastics was traditionally evaluated in aquatic animals such as molluscs, crustaceans and fish. Recent in vitro analyzes, using cell cultures of fish and mammals, has allowed scientists to analyze the changes in gene expression associated with the presence of nanoplastics from a toxicological viewpoint. The majority of neurological, endocrine and immunological tracts in these vertebrates are very similar to those of humans, and therefore authors warn that some of the effects observed in these models could also be applied to humans. Understanding and analyzing the process through which these plastic fragments penetrate the organism and harm it is fundamental, as is determining precisely the amount and typology of nanoplastics polluting the environment.

In the past twenty years, one of the biggest developments to take place in the realm of space exploration has been the growth of the commercial space industry (aka. NewSpace). As a result of growing demand and declining costs, more companies are coming to the fore to offer launch services that are making space more accessible and cost-effective.

One such company is the space delivery services company Aevum, an Alabama-based startup specializing in Autonomous Launch Vehicles (AuLVs). On Dec. 3rd, 2020, Aevum unveiled their prototype vehicle, the RAVN-X. Once operational, this autonomous suborbital spaceplane will be able to send satellites and other small payloads to Low Earth Orbit (LEO) in just three hours.

The term Aevum (derived from the Latin word for age) comes from the Scholastic philosophy of the Middle Ages. Basically, it refers to the state of existence experienced by the angles, between the temporal realm (where the mortals live) and eternity (God in heaven). In the context of aerospace, it refers to LEO, the region that lies between Earth and outer space.

Who knew wood could still be useful in space. 😃


TOKYO — Japanese logging company Sumitomo Forestry and Kyoto University are planting the seeds for a 2023 launch of the world’s first satellite made out of wood.

The partners announced their intentions on Wednesday, saying the aim was basic research and proof of concept.

They have agreed to conduct research on tree growth and the use of wood materials in space. They hope to promote technology for using wood in extreme environments on Earth.