A new framework bridges a gap in understanding RNA therapeutics by linking the structure of lipid nanoparticles to immune response. It can help scientists and engineers expand the use of RNA medicines beyond vaccines to other therapeutic applications.
Researchers at Berkeley Lab have advanced the understanding of magnetic skyrmions by developing techniques to image their 3D structures.
These nanoscale objects show promise for revolutionizing microelectronics through enhanced data storage capabilities and reduced energy consumption.
A difficult-to-describe nanoscale structure called the magnetic skyrmion holds potential for creating advanced microelectronic devices, including those with vast data storage capacities and significantly lower power requirements.
Researchers at the University of Chicago and Argonne National Lab have developed a new type of optical memory that stores data by transferring light from rare-earth element atoms embedded in a solid material to nearby quantum defects. They published their study in Physical Review Research.
Deposits of ice in lunar dust and rock (regolith) are more extensive than previously thought, according to a new analysis of data from NASA’s LRO (Lunar Reconnaissance Orbiter) mission. Ice would be a valuable resource for future lunar expeditions. Water could be used for radiation protection and supporting human explorers, or broken into its hydrogen and oxygen components to make rocket fuel, energy, and breathable air.
Prior studies found signs of ice in the larger permanently shadowed regions (PSRs) near the lunar South Pole, including areas within Cabeus, Haworth, Shoemaker and Faustini craters. In the new work, “We find that there is widespread evidence of water ice within PSRs outside the South Pole, towards at least 77 degrees south latitude,” said Dr. Timothy P. McClanahan of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a paper on this research published October 2 in The Planetary Science Journal.
The study further aids lunar mission planners by providing maps and identifying the surface characteristics that show where ice is likely and less likely to be found, with evidence for why that should be. “Our model and analysis show that greatest ice concentrations are expected to occur near the PSRs’ coldest locations below 75 Kelvin (−198°C or −325°F) and near the base of the PSRs’ poleward-facing slopes,” said McClanahan.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology by conducting leading-edge basic and applied research in virtually every scientific discipline. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.
The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.
The world has set its sights on hydrogen to find workable and environmentally friendly means of transport.
Sweden unveils the first-ever green-fueled engine with Volvo’s innovative D17, leading the way for sustainable transportation solutions globally.
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhDDiscount Links/Affiliates: Blood testing (where I get my labs): https://www.ultalabtests.com/…
Media Advisory: Cybersecurity & Emerging Tech Expert and Georgetown professor Chuck Brooks Media Availability.
This week, see how new telescopes may reshape how astronomers view the cosmos, discover forgotten medieval cities, learn about fireflies’ early evolution, and more.
PRESS RELEASE — After over a year of evaluation, NIST has selected 14 candidates for the second round of the Additional Digital Signatures for the NIST PQC Standardization Process. The advancing digital signature algorithms are:
NIST Internal Report (IR) 8528 describes the evaluation criteria and selection process. Questions may be directed to [email protected]. NIST thanks all of the candidate submission teams for their efforts in this standardization process as well as the cryptographic community at large, which helped analyze the signature schemes.
Moving forward, the second-round candidates have the option of submitting updated specifications and implementations (i.e., “tweaks”). NIST will provide more details to the submission teams in a separate message. This second phase of evaluation and review is estimated to last 12–18 months.