Toggle light / dark theme

Scientists are using cutting-edge techniques to track water ice on the Moon—an essential resource for future space missions.

A University of Hawai‘i team utilized ShadowCam to peer into the Moon’s perpetually dark craters, refining estimates of surface ice. Another team introduced a cosmic ray-based method to detect deeply buried ice, a breakthrough in lunar exploration. Both approaches could revolutionize how we locate usable water beyond Earth, with Hawai‘i emerging as a key player in the growing space frontier.

Unlocking lunar water: why ice on the moon matters.

RIKEN scientists have discovered how to manipulate molybdenum disulfide into acting as a superconductor, metal, semiconductor, or insulator using a specialized transistor technique.

By inserting potassium ions and adjusting conditions, they could trigger dramatic changes in the material’s electronic state—unexpectedly even turning it into a superconductor or insulator. This new level of control over a single 2D material could unlock exciting breakthroughs in next-gen electronics and superconductivity research.

Unlocking versatility in a single material.

In a dramatic leap for astrophysics, Chinese researchers have recreated a key cosmic process in the lab: the acceleration of ions by powerful collisionless shocks.

By using intense lasers to simulate space-like conditions, they captured high-speed ion beams and confirmed the decades-old theory that shock drift acceleration, not shock surfing, is the main driver behind these energy gains. This discovery connects lab physics with deep-space phenomena like cosmic rays and supernova remnants, paving the way for breakthroughs in both fusion energy and space science.

Breakthrough in particle acceleration observed in lab.

The thymus is a crucial training ground for T-cells, the body’s “white knights,” where they learn to battle the various diseases they may encounter. Thymic function shrinks to nearly nothing as we age, severely limiting our ability to recognize and defend against cellular infiltrators.

Scientists at the University of Texas Health Science Center at San Antonio (UT Health San Antonio) discovered a crucial pathway in the thymus that determines the rate of growth and functional preservation. Surprisingly, this pathway appears to act through both indirect and direct methods. Understanding these functions could help produce treatments that preserve thymic function for longer, boosting the immune system’s power to fight disease.

A UT Health San Antonio-led study, published in Nature Aging in February 2025, highlights the role of the peptide hormone fibroblast growth factor 21 (FGF21) in regulating T-cells and, potentially, preserving thymic size over time.

Born and brought up in East Germany, Professor Franka Kalman is a much-respected figure in the field of separation sciences. Following undergraduate and postgraduate studies at the Technical University Budapest, Hungary, where she learned about the then emerging technique of high performance liquid chromatography (HPLC), she applied that knowledge to complete her PhD looking at the analysis of novel opioid peptides at Martin Luther University Halle, Germany.

Her postdoctoral studies in the lab of the late, great Professor Csaba Horvath at Yale University, a placement that by all accounts provided both a grounding and springboard for her future career, were to be transformative and the techniques she developed there have gone on to be game-changing in the world of pharmaceutical development, analysis and quality control. Work for which she was recognized in 2012, when she was presented with the prestigious CEPharm Award from the Californian Separation Science Society (CASSS) for significant contributions to the practical application of capillary electrophoresis (CE) in the biotechnology and pharmaceutical industries.

After her time as a postdoc, she spent 13 very successful years in the pharmaceutical industry, working at the interface between science and industrial applications.