Toggle light / dark theme

Anyone who has followed the career of Elon Musk knows that he formulated a set of goals many years ago, and has worked tirelessly and methodically to reach those goals, a process that he knew would take years or decades. Even casual observers are familiar with Tesla’s Master Plan, a three-part strategy to bring a mid-priced EV to the mass market.

In Michelle O’Malley’s lab, a simple approach suggests a big leap forward in addressing the challenge of antibiotic-resistant bacteria.

Scientists have long been aware of the dangerous overuse of antibiotics and the increasing number of antibiotic-resistant microbes that have resulted. While over-prescription of antibiotics for medicinal use has unsettling implications for human health, so too does the increasing presence of antibiotics in the natural environment. The latter may stem from the improper disposal of medicines, but also from the biotechnology field, which has depended on antibiotics as a selection device in the lab.

“In biotech, we have for a long time relied on antibiotic and chemical selections to kill cells that we don’t want to grow,” said UC Santa Barbara chemical engineer Michelle O’Malley. “If we have a genetically engineered cell and want to get only that cell to grow among a population of cells, we give it an antibiotic resistance gene. The introduction of an antibiotic will kill all the cells that are not genetically engineered and allow only the ones we want — the genetically modified organisms [GMOs] — to survive. However, many organisms have evolved the means to get around our antibiotics, and they are a growing problem in both the biotech world and in the natural environment. The issue of antibiotic resistance is a grand challenge of our time, one that is only growing in its importance.”

Circa 2010


Unmanned aerial vehicles, or UAVs, are used in many applications to gather intelligence without risking human lives. These aircraft, however, have limited flight time because of their reconnaissance payload requirements coupled with their limited scale. A microwave-powered flight vehicle would be able to perform a reconnaissance mission continuously.

Using beamed microwave energy from a remote source on the ground, the airplane gathers energy using onboard antennas. A rectifying antenna, or rectenna, harvests power and rectifies it into a form usable by an onboard electric motor that drives the propeller, providing thrust. Using a rectenna array affixed to the underside of the aircraft, the power needed to maintain flight can be remotely transmitted.

The idea of a fuel-less flight vehicle, or an aircraft that does not carry its own fuel, has been pursued in few different forms over the past decades. There are many different approaches for how to power these vehicles; however, the common theme is that power must be transmitted from a source remote to the aircraft. Some of the possibilities for power transmission include solar power, the heating of air underneath the aircraft to cause thrust, and using antennas to convert microwave radiation into electrical power.

One of the first people in the UK to have a double hand transplant has said her progress has been “phenomenal”, as she continues to pick up new skills two years on.

Cor Hutton, from Lochwinnoch in Renfrewshire, was the first patient in Scotland and the third in the UK to successfully have the procedure, having had her hands and feet amputated in 2013 after suffering acute pneumonia and sepsis which nearly killed her.

On the second anniversary of coming round from the 12-hour operation on January 9 2019, Ms Hutton paid tribute to the donor and the medical team as she said she is “very lucky”.