Toggle light / dark theme

UC San Francisco scientists have discovered a new way to control the immune system’s “natural killer” (NK) cells, a finding with implications for novel cell therapies and tissue implants that can evade immune rejection. The findings could also be used to enhance the ability of cancer immunotherapies to detect and destroy lurking tumors.

The study, published today (January 82021) in the Journal of Experimental Medicine, addresses a major challenge for the field of regenerative medicine, said lead author Tobias Deuse, MD, the Julien I.E. Hoffman, MD, Endowed Chair in Cardiac Surgery in the UCSF Department of Surgery.

“As a cardiac surgeon, I would love to put myself out of business by being able to implant healthy cardiac cells to repair heart disease,” said Deuse, who is interim chair and director of minimally invasive cardiac surgery in the Division of Adult Cardiothoracic Surgery. “And there are tremendous hopes to one day have the ability to implant insulin-producing cells in patients with diabetes or to inject cancer patients with immune cells engineered to seek and destroy tumors. The major obstacle is how to do this in a way that avoids immediate rejection by the immune system.”

Quantum twist on optical coherence tomography offers million-fold improvement in imaging.


Entangled pairs of photons have been used by physicists in Germany and Austria to image structures beneath the surfaces of materials that scatter light. The research was led by Aron Vanselow and Sven Ramelow at Humboldt University of Berlin and achieved high-resolution images of the samples using “ultra-broadband” photon pairs with very different wavelengths. One photon probed the sample, while the other read out image information. Their compact, low-cost and non-destructive system could be put to work inspecting advanced ceramics and mixing in fluids.

Optical coherence tomography (OCT) is a powerful tool for imaging structures beneath the surfaces of translucent materials and has a number of applications including the 3D scanning of biological tissues. The technique uses interferometry to reject the majority of light that has scattered many times in an object, focussing instead on the rare instances when light only scatters once from a feature of interest. This usually involves probing the material with visible or near-infrared light, which can be easily produced and detected. Yet in some materials such as ceramics, paints, and micro-porous samples, visible and near-infrared light is strongly scattered – which limits the use of OCT. Mid-infrared light, however, can penetrate deeper into these samples without scattering – but this light is far more difficult to produce and detect.

Vanselow, Ramelow and colleagues circumvented this problem by using pairs of quantum-mechanically entangled photons in which one photon is mid-infrared and the other is either visible or near-infrared. The entangled pairs are generated by firing a “pump” laser beam at a specialized nonlinear crystal developed by the team. This creates entangled pairs of photons – one mid-infrared “idler” photon and one visible/near-infrared “signal” photon.

Circa 2016


Many people think that it is the rubber tires that protect them when their car is struck by lightning. In reality, their car is becoming a Faraday cage. What is that and how does it work?

Michael Faraday was a British scientist born in 1791. Although not formally educated, he had a strong interest in electromagnetism. He also credited with discovering Benzene and popularizing terms such as anode, cathode and electrode. As an apprentice for a bookbinder, he read many books which encouraged his interest in science. He soon became a well known experimental scientist leading to his name becoming a unit of electrical charge. He is also known for inventing the Faraday rotator and Faraday cage.

New program aims to build and demonstrate ruggedized device for tactical applications.

Like.

Comment.


Linear accelerators, LINACs for short, are devices that accelerate electrons or other sub-atomic particles along a straight line to generate a beam of high energy. LINACs have a variety of commercial uses such as generating X-rays for cargo inspection, medical diagnostics, food sterilization, and even enabling precise external radiation treatments to destroy cancer cells without damaging surrounding tissue. To generate more powerful electron beams using current technology, however, requires building larger LINACs that can grow to dozens of meters or longer depending on the application. Unfortunately, powerful LINACs are too large and heavy to be practical for military use in the field.

Leveraging new tech, DARPA aims for night-vision goggles the size and weight of regular eyeglasses.

Like.

Comment.


For decades U.S. warfighters have benefitted from advanced night-vision technology, allowing pilots to fly low-level missions on pitch-black nights and ground forces to conduct operations against adversaries in the dark. But current night-vision goggle (NVG) technology requires cumbersome binocular-like optics mounted on a helmet, offering limited field of view (FOV) and putting unhealthy strain on the wearer’s neck. Building on recent scientific advances in photonics and optical materials pioneered in DARPA’s Defense Sciences Office (DSO), a new effort seeks to develop next-generation NVGs that are as lightweight and compact as a pair of regular eyeglasses or sunglasses.

Atmospheric Water Extraction (AWE) performers aim to meet clean water needs of deployed troops, even in austere environments.

Like.

Comment.


DARPA recently awarded five contracts and selected one Government partner to develop technology to capture potable water from the air in quantities sufficient to meet critical DoD needs, even in extremely dry climates. GE Research, Physical Sciences Inc., Honeywell International Inc., Massachusetts Institute of Technology, University of Texas at Austin, and U.S. Naval Research Laboratory were chosen to develop next-generation, scalable sorbent materials and prototypes under DARPA’s Atmospheric Water Extraction (AWE) program.

Field tests validate tech that automatically links diverse radio waveforms in contested environments.

Like.

Comment.


A DARPA network technology program recently concluded field tests demonstrating novel software that bridges multiple disparate radio networks to enable communication between incompatible tactical radio data links – even in the presence of hostile jamming. The technology is transitioning to Naval Air Systems Command (NAVAIR) and the Marine Corps, which plans to put the software on a software reprogrammable multi-channel radio platform for use on aircraft and ground vehicles.