Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Highly charged muonic ions observed in gas-phase experiment for first time

An international team of researchers, including members from the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), has directly observed “highly charged muonic ions,” a completely new class of exotic atomic systems, in a gas-phase experiment for the first time. The study was published online on June 16 in Physical Review Letters.

The observation highlights the capabilities of advanced superconducting transition-edge-sensor (TES) microcalorimeters in revealing previously inaccessible atomic phenomena.

Normal atoms consist of a nucleus and bound electrons and are electrically neutral. However, when many electrons are removed, the atom becomes highly charged. These charged atoms, known as highly charged ions, are valuable tools for research across various fields, including fundamental physics, nuclear fusion, surface science, and astronomy.

Elon Musk: Digital Superintelligence, Multiplanetary Life, How to Be Useful

A fireside with Elon Musk at AI Startup School in San Francisco.

Before rockets and robots, Elon Musk was drilling holes through his office floor to borrow internet. In this candid talk, he walks through the early days of Zip2, the Falcon 1 launches that nearly ended SpaceX, and the “miracle” of Tesla surviving 2008.

He shares the thinking that guided him—building from first principles, doing useful things, and the belief that we’re in the middle of an intelligence big bang.

Chapters:

00:00 — Intro.
01:25 — His origin story.
02:00 — Dream to help build the internet.
04:40 — Zip2 and lessons learned.
08:00 — PayPal.
14:30 — Origin of SpaceX
18:30 — Building rockets from first principles.
23:50 — Lessons in leadership.
27:10 — Building up xAI
39:00 — Super intelligence and synthetic data.
39:30 — Multi-planetary future.
43:00 — Nueralink, AI safety and the singularity.

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy’s keynote at AI Startup School in San Francisco. Slides provided by Andrej: https://drive.google.com/file/d/1a0h1mkwfmV2PlekxDN8isMrDA5evc4wW

Drawing on his work at Stanford, OpenAI, and Tesla, Andrej sees a shift underway. Software is changing, again. We’ve entered the era of “Software 3.0,” where natural language becomes the new programming interface and models do the rest.

He explores what this shift means for developers, users, and the design of software itself— that we’re not just using new tools, but building a new kind of computer.

More content from Andrej: / @andrejkarpathy.

Chapters and Thoughts (From Andrej Karpathy!)
0:00 — Imo fair to say that software is changing quite fundamentally again. LLMs are a new kind of computer, and you program them *in English*. Hence I think they are well deserving of a major version upgrade in terms of software.
6:06 — LLMs have properties of utilities, of fabs, and of operating systems → New LLM OS, fabbed by labs, and distributed like utilities (for now). Many historical analogies apply — imo we are computing circa ~1960s.
14:39 — LLM psychology: LLMs = \.

Scientists propose blueprint for ‘universal translator’ in quantum networks

UBC researchers are proposing a solution to a key hurdle in quantum networking: a device that can “translate” microwave to optical signals and vice versa.

The technology could serve as a universal translator for quantum computers—enabling them to talk to one another over long distances and converting up to 95% of a signal with virtually no noise. And it all fits on a , the same material found in everyday computers.

“It’s like finding a translator that gets nearly every word right, keeps the message intact and adds no background chatter,” says study author Mohammad Khalifa, who conducted the research during his Ph.D. at UBC’s faculty of applied science and the Stewart Blusson Quantum Matter Institute (SBQMI).

/* */