Toggle light / dark theme

Atmospheric Water Extraction (AWE) performers aim to meet clean water needs of deployed troops, even in austere environments.

Like.

Comment.


DARPA recently awarded five contracts and selected one Government partner to develop technology to capture potable water from the air in quantities sufficient to meet critical DoD needs, even in extremely dry climates. GE Research, Physical Sciences Inc., Honeywell International Inc., Massachusetts Institute of Technology, University of Texas at Austin, and U.S. Naval Research Laboratory were chosen to develop next-generation, scalable sorbent materials and prototypes under DARPA’s Atmospheric Water Extraction (AWE) program.

Field tests validate tech that automatically links diverse radio waveforms in contested environments.

Like.

Comment.


A DARPA network technology program recently concluded field tests demonstrating novel software that bridges multiple disparate radio networks to enable communication between incompatible tactical radio data links – even in the presence of hostile jamming. The technology is transitioning to Naval Air Systems Command (NAVAIR) and the Marine Corps, which plans to put the software on a software reprogrammable multi-channel radio platform for use on aircraft and ground vehicles.

New initiative aims to lower high barrier to entry for resource-constrained organizations, increasing access to participate in forward-looking research.

Like.

Comment.


As the world continues to change and advance at a rapid pace, the need for continuous innovation has never been greater. DARPA’s open innovation model leverages the expertise and novel ideation found in large and small businesses, government organizations, and academic institutions. However, resource constraints across these organizations can limit their participation in cutting-edge research opportunities. Within the microelectronics arena in particular, skyrocketing costs for designing integrated circuits are stifling participation in the innovation process.

Next capture attempts scheduled to occur in spring of 2021

Like.

Comment.


Attempts at airborne retrieval of three unmanned air vehicles, nicknamed Gremlins, were just inches from success in DARPA’s latest flight test series that started on October 28. Each X-61A Gremlins Air Vehicle (GAV) flew for more than two hours, successfully validating all autonomous formation flying positions and safety features. Nine attempts were made at mechanical engagement of the GAVs to the docking bullet extended from a C-130 aircraft, but relative movement was more dynamic than expected and each GAV ultimately, safely parachuted to the ground.

DARPA Looks to Light up Integrated Photonics with Chip-Scale Laser DevelopmentAgency announces performer teams selected for LUMOS program.

Like.

Comment.


First demonstrated sixty years ago, the laser has become an essential technology in today’s world. It has transformed diverse fields including communications, sensing, manufacturing, and medicine. More recently, innovations in integrated photonics have allowed the miniaturization of key optical components and the ability to arrange several elements on a single silicon chip. When combined with lasers, these photonic integrated circuits (PICs) have the potential to replace large and costly optical systems with chip-scale solutions. However, due to differences in the properties of the materials that compose them, lasers and PICs are difficult to combine onto the same platform, limiting the benefits of integration and preventing broad technology impact.

Eighty-six years since electron crystals were first proposed, physicists have now constructed them, trapping electrons in a repeating pattern. The achievement is reported in the journal Nature.

A crystal is made of a repeating pattern of particles but electrons are difficult to keep in place. So an electron crystal is like trying to organize a large number of electrons that won’t stay still — it’s the herding cats of particle physics.

However, this team had an ingenious solution. They built a Wigner crystal using layers of semi-conductors just one atom thick. They then used two different tungsten materials and created a hexagonal pattern known as a moiré superlattice by placing one material on top of the other.

Japan’s Prime Minister Yoshihide Suga has declared a state of emergency for the nation’s capital and surrounding areas as Covid-19 cases surge to the highest levels since the start of the pandemic.

The emergency declaration will be in place from Friday until February 7 and applies to Tokyo and the three neighboring prefectures of Chiba, Saitama and Kanagawa. The emergency includes a number of restrictions on daily life.

Suga has ordered companies to encourage their staff to work from home and reduce office populations by 70%.

Capturing energy from the Sun with solar panels is only half the story – that energy needs to be stored somewhere for later use. In the case of flow batteries, storage is relegated to vats of liquid. Now, an international team led by University of Wisconsin-Madison scientists has created a new version of these solar flow batteries that’s efficient and long-lasting.

To make the new device, the team combined several existing technologies. It’s a silicon/perovskite tandem solar cell, paired with a redox flow battery, which the team says will allow people to harvest and store renewable energy in one device. Not only is it efficient, but it should be inexpensive and simple enough to scale up for home use.

The energy-harvesting part of the equation combines the long-time industry-leading material – silicon – with a promising young upstart called perovskite. These tandem solar cells have proved better than either material alone, since the two materials capture different wavelengths of light.

A new “transforming” rover in development at NASA will be able to explore rough terrain unlike any rover before it.

DuAxle (short for dual-Axel) gets its name because it’s made of a combination of a pair of two-wheeled Axel rovers. The Axel rover is a simple, two-wheeled rover with a long tether that connects to a larger vehicle and stabilizes the rover as it descends into and explores craters that other rovers would not be able to handle. The Axel is equipped with a robotic arm that can collect samples, as well as stereoscopic cameras to gather imagery.