Toggle light / dark theme

Synthetic cannabidiol, better known as CBD, has been shown for the first time to kill the bacteria responsible for gonorrhea, meningitis and legionnaires disease.

The between The University of Queensland and Botanix Pharmaceuticals Limited could lead to the first new class of for in 60 years.

The UQ Institute for Molecular Bioscience’s Associate Professor Mark Blaskovich said CBD—the main nonpsychoactive component of cannabis—can penetrate and kill a wide range of bacteria including Neisseria gonorrhoeae, which causes gonorrhea.

Billionaires Elon Musk, Jeff Bezos, and Richard Branson all want to send private citizens to space. Their respective companies, SpaceX, Blue Origin, and Virgin Galactic are dedicated to making space travel and space tourism more accessible.

Narrator: SpaceX, Blue Origin, and Virgin Galactic are in a modern space race. Similar to when the United States and the Soviet Union competed to get astronauts on the moon, these billionaire-run companies are racing to bring people like you and me to space. But how will they do it?

Let’s start with Blue Origin, the passion project of Amazon CEO Jeff Bezos. Blue Origin’s focus is on commercial space flight, or space tourism. It plans to shoot a booster rocket with an attached passenger capsule to 60 miles above the surface into sub-orbital space. At the top of the rocket’s arch, the capsule will detach, and for about four minutes, passengers will experience weightlessness. They’ll be allowed to unbuckle their seat belts and float around the cabin, looking out the window at the curvature of the Earth. The capsule will then start to fall back into the atmosphere, and parachutes will deploy to bring it down slowly. The whole trip only lasts about 11 minutes. A ticket on Blue Origin’s New Shepard will likely cost more than $200000. That’s over $18000 a minute. Blue Origin has tested the New Shepard rocket nine times, and the company still hopes to send civilians into space in 2018.

Les chercheurs de l’Université Jiaotong du Sud-Ouest ont dévoilé mercredi, à Chengdu, un nouveau prototype de train à sustentation magnétique, également appelé ‘maglev’ (magnetic levitation). Selon ses concepteurs, l’engin pourra, à terme, rivaliser en vitesse pure avec le transport aérien.

Avec le Transrapid de Shanghai, dont la vitesse maximale est de 430 km/h, la Chine dispose déjà du service commercial ‘maglev’ le plus rapide au monde. Mais avec le nouveau prototype de train dévoilé cette semaine, l’empire du Milieu espère bien disposer, dans un futur proche, d’un moyen de transport qui ira jusqu’à près de deux fois plus vite.

Supraconductivité

Les chercheurs chinois ont en effet développé ce nouvel engin à sustentation magnétique pour atteindre une vitesse de 620 km/h. Mais selon le site du South China Morning Post, ils s’efforçaient même de porter cette vitesse à… 800 km/h. De quoi rivaliser avec la plupart des avions du transport aérien commercial actuellement en service. Si certains problèmes doivent encore être réglés avant que la technologie ne devienne commercialement viable, le chercheurs pensent pouvoir en venir à bout au cours des six années à venir.

There were the cleaners, with large padded feet, who were apparently polishing their way the whole length…’ — Arthur C. Clarke, 1972.

IceBot Antarctic (Planetary?) Robotic Explorers Made Of Ice ‘Some will combine in place to form more complicated structures, like excavators or centipedes.’ — Greg Bear, 2015.

Study: Robots Encourage Humans To Take Risks Not exactly Three Laws compliant.

BladeBUG Robots Clean Massive Wind Turbine Blades ‘There were the cleaners, with large padded feet, who were apparently polishing their way the whole length…’ — Arthur C. Clarke, 1972.

IceBot Antarctic (Planetary?) Robotic Explorers Made Of Ice ‘Some will combine in place to form more complicated structures, like excavators or centipedes.’ — Greg Bear, 2015.

Study: Robots Encourage Humans To Take Risks Not exactly Three Laws compliant.

Researchers at Harvard University have recently devised a system based on Wi-Fi sensing that could enhance the collaboration between robots operating in unmapped environments. This system, presented in a paper pre-published on arXiv, can essentially emulate antenna arrays in the air as a robot moves freely in a 2-D or 3D environment.

“The main goal of our paper was to leverage arbitrary 3D trajectories for a (UAV or UGV) equipped with an on-board estimation sensor,” Ninad Jadhav, one of the researchers who carried out the study, told TechXplore. “This allows a Wi-Fi-signal-receiving robot to estimate the spatial direction (in azimuth and elevation) of other neighboring robots by capturing all the wireless signal paths traveling between the transmitting and receiving robot (which we call AOA profile). Additionally, we also characterized how the trajectory shape impacts the AOA profile using Cramer Rao bound.”

In their previous studies, Jadhav and his colleagues focused on robot collaboration scenarios in which the robots followed 2-D trajectories with a limited set of geometries (e.g., linear or curved). The new system they created, on the other hand, is applicable to scenarios where robots are moving freely, following a wider range of trajectories.

Over the past few years, researchers have been trying to develop new designs for perovskite solar cells that could improve their performance, efficiency and stability over time. One possible way of achieving this is to combine 2-D and 3D halide perovskites in order to leverage the advantageous properties of these two different types of perovskites.

The two-dimensional crystal structure of 2-D halide perovskites is highly resistant to moisture; thus, it could help to increase the performance and durability of solar with a light-absorbing 3D halide perovskite layer. However, most of the strategies for combining 2-D and 3D halide perovskites proposed so far simply entail mixing these two materials together (e.g., mixing 2-D precursors with a solution-based 3D perovskite or reacting 2-D precursor solutions on top of a 3D perovskite layer).

Researchers at Seoul National University and Korea University have recently devised an alternative approach for creating solar cells that combine 2-D and 3D halide perovskites. This approach, outlined in a paper published in Nature Energy, could help to simultaneously improve both the efficiency and long-term stability of these cells.