Menu

Blog

Page 6

Sep 18, 2024

How to work more efficiently, according a neuroscientist

Posted by in category: neuroscience

In her new book, neuroscience researcher Mithu Storoni breaks down how to best structure your work sessions and increase your productivity.

Sep 18, 2024

An unprecedented feat: Printing 3D photonic crystals that completely block light

Posted by in category: materials

Photonic crystals are materials with repeating internal structures that interact with light in unique ways. We can find natural examples in opals and the vibrant colored shells of some insects. Even though these crystals are made of transparent materials, they exhibit a “photonic bandgap” that blocks light at certain wavelengths and directions.

Sep 18, 2024

Our reality seems to be compatible with a quantum multiverse

Posted by in categories: cosmology, quantum physics

Even though the strange behaviour we observe in the quantum realm isn’t part of our daily lives, simulations suggest it is likely our reality could be one of the many worlds in a quantum multiverse.

By Karmela Padavic-Callaghan

Sep 18, 2024

Cause and effect may not actually be muddled in the quantum realm

Posted by in category: quantum physics

The direction of cause and effect was brought into question for quantum objects more than a decade ago, but new calculations may offer a way to restore it.

By Karmela Padavic-Callaghan

Sep 18, 2024

DNA origami with cargo function

Posted by in categories: biotech/medical, nanotechnology

In the world of nanotechnology, the development of dynamic systems that respond to molecular signals is becoming increasingly important. The DNA origami technique, whereby DNA is programmed so as to produce functional nanostructures, plays a key role in these endeavors. Teams led by LMU chemist Philip Tinnefeld have now published two studies showing how DNA origami and fluorescent probes can be used to release molecular cargo in a targeted manner.

In the journal Angewandte Chemie (“DNA Origami Vesicle Sensors with Triggered Single-Molecule Cargo Transfer”), the researchers report on their development of a novel DNA-origami-based sensor that can detect lipid vesicles and deliver molecular cargo to them with precision.

The sensor works using single-molecule Fluorescence Resonance Energy Transfer (smFRET), which involves measuring the distance between two fluorescent molecules. The system consists of a DNA origami structure, out of which a single-stranded DNA protrudes, which has been labeled with fluorescent dye at its tip. If the DNA comes into contact with vesicles, its conformation changes. This alters the fluorescent signal, because the distance between the fluorescent label and a second fluorescent molecule on the origami structure changes. This method allows vesicles to be detected.

Sep 18, 2024

‘Massless’ battery promises a 70% increase in EV range

Posted by in categories: computing, mobile phones, transportation

Researchers say they’ve built and tested a ‘structural battery’ that packs a device or EV’s chassis with energy, saving a ton of weight. It could unlock smartphones as thin as credit cards, laptops at half the weight and a 70% boost to EV range.

EVs rely heavily – pun intended – on large lithium-ion batteries to cover long distances. Researchers at Chalmers University of Technology wondered if they could build a battery that doubles as the load-bearing material holding the car together, and shed some weight.

As part of their work on what they call ‘massless energy storage,’ the research team in Sweden has developed a battery made of a carbon fiber composite. It promises similar stiffness to aluminum, while also being capable of storing a fair bit of energy – enough to be used commercially.

Sep 18, 2024

Nuclear theorists turn to supercomputers to map out matter’s building blocks in 3D

Posted by in categories: education, particle physics, supercomputing

Deep inside what we perceive as solid matter, the landscape is anything but stationary. The interior of the building blocks of the atom’s nucleus—particles called hadrons that a high school student would recognize as protons and neutrons—are made up of a seething mixture of interacting quarks and gluons, known collectively as partons.

Sep 18, 2024

Why some organs age faster than others: Scientists discover hidden mutations in non-coding DNA

Posted by in categories: biotech/medical, life extension

The accumulation of mutations in DNA is often mentioned as an explanation for the aging process, but it remains just one hypothesis among many. A team from the University of Geneva (UNIGE), in collaboration with the Inselspital, University Hospital of Bern and the University of Bern (UNIBE), has identified a mechanism that explains why certain organs, such as the liver, age more rapidly than others.

The mechanism reveals that damages to non-coding DNA, which are often hidden, accumulate more in slowly proliferating tissues, such as those of the liver or kidneys. Unlike in organs that regenerate frequently, these damages remain undetected for a long time and prevent . These results, published in the journal Cell, open new avenues for understanding cellular aging and potentially slowing it down.

Our organs and tissues do not all age at the same rate. Aging, marked by an increase in —cells that are unable to divide and have lost their functions—affects the liver or kidneys more rapidly than the skin or intestine.

Sep 18, 2024

Zirconium metals under extreme conditions found to deform in surprisingly complex ways

Posted by in categories: military, nuclear energy, sustainability

Materials are crucial to modern technology, especially those used in extreme environments like nuclear energy systems and military applications. These materials need to withstand intense pressure, temperature and corrosion. Understanding their lattice-level behavior under such conditions is essential for developing next-generation materials that are more resilient, cheaper, lighter and sustainable.

Sep 18, 2024

Newly developed OLED could enable compact, lightweight night vision

Posted by in category: electronics

A new type of OLED (organic light emitting diode) could replace bulky night vision goggles with lightweight glasses, making them cheaper and more practical for prolonged use, according to University of Michigan researchers.

Page 6 of 11,740First345678910Last