Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

ALMA reveals hidden structures in the first galaxies of the universe

Astronomers have used the Atacama Large Millimeter/submillimeter Array (ALMA) to peer into the early universe and uncover the building blocks of galaxies during their formative years. The CRISTAL survey—short for [CII] Resolved ISM in STar-forming galaxies with ALMA—reveals cold gas, dust, and clumpy star formation in galaxies observed as they appeared just 1 billion years after the Big Bang.

“Thanks to ALMA’s unique sensitivity and resolution, we can resolve the internal structure of these early in ways never possible before,” said Rodrigo Herrera-Camus, principal investigator of the CRISTAL survey, professor at Universidad de Concepción, and Director of the Millennium Nucleus for Galaxy Formation (MINGAL) in Chile. “CRISTAL is showing us how the first galactic disks formed, how stars emerged in giant clumps, and how gas shaped the galaxies we see today.”

CRISTAL, an ALMA Large Program, observed 39 typical star-forming galaxies selected to represent the main population of galaxies in the early universe. Using [CII] line emission, a specific type of light emitted by ionized in cold interstellar gas, as a tracer of and dust, and combining it with near-infrared images from the James Webb and Hubble Space Telescopes, researchers created a detailed map of the interstellar medium in each system.

Ultrafast 12-minute MRI maps brain chemistry to spot disease before symptoms

Illinois engineers fused ultrafast imaging with smart algorithms to peek at living brain chemistry, turning routine MRIs into metabolic microscopes. The system distinguishes healthy regions, grades tumors, and forecasts MS flare-ups long before structural MRI can. Precision-medicine neurology just moved closer to reality.

Quantum Dots For Reliable Quantum Key Distribution

Making the exchange of a message invulnerable to eavesdropping doesn’t strictly require quantum resources. All you need to do is to encrypt the message using a one-use-only random key that is at least as long as the message itself. What quantum physics offers is a way to protect the sharing of such a key by revealing whether anyone other than sender and recipient has accessed it.

Imagine that a sender (Alice) wants to send a message to a recipient (Bob) in the presence of an eavesdropper (Eve). First, Alice creates a string of random bits. According to one of the most popular quantum communication protocols, known as BB84, Alice then encodes each bit in the polarization state of an individual photon. This encoding can be performed in either of two orientations, or “bases,” which are also chosen at random. Alice sends these photons one at a time to Bob, who measures their polarization states. If Bob chooses to measure a given photon in the basis in which Alice encoded its bit, Bob’s readout of the bit will match that of Alice’s. If he chooses the alternative basis, Bob will measure a random polarization state. Crucially, until Alice and Bob compare their sequence of measurement bases (but not their results) over a public channel, Bob doesn’t know which measurements reflect the bits encoded by Alice. Only after they have made this comparison—and excluded the measurements made in nonmatching bases—can Alice and Bob rule out that eavesdropping took place and agree on the sequence of bits that constitutes their key.

The efficiency and security of this process depend on Alice’s ability to generate single photons on demand. If that photon-generation method is not reliable—for example, if it sometimes fails to generate a photon when one is scheduled—the key will take longer to share. If, on the other hand, the method sometimes generates multiple photons simultaneously, Alice and Bob run the risk of having their privacy compromised, since Eve will occasionally be able to intercept one of those extra photons, which might reveal part of the key. Techniques for detecting such eavesdropping are available, but they involve the sending of additional photons in “decoy states” with randomly chosen intensities. Adding these decoy states, however, increases the complexity of the key-sharing process.

Radiation Imbalance: New Material Emits Better Than It Absorbs

A newly designed structure exhibits the largest-recorded emissivity–absorptivity difference, a property that could prove useful in energy-harvesting and cloaking devices.

Hot objects glow. From the warmth of a stovetop to the invisible heat radiating from a building’s roof, thermal radiation flows outward. But it also flows inward in a reciprocal manner. This means that at thermal equilibrium, an object’s ability to thermally emit light in one direction, described as emissivity, is equal to its ability to absorb the same light coming in from the other direction, known as absorptivity. But what if this rule could be violated?

In a new study, Zhenong Zhang and colleagues from Pennsylvania State University demonstrate this exciting possibility [1]. The researchers apply an external magnetic field to a layered material, creating a system that breaks Lorentz reciprocity—a common symmetry that relates electromagnetic inputs and outputs. They then show that this nonreciprocal system exhibits much higher emissivity than absorptivity in the same direction. The observed difference between emissivity and absorptivity is twice that observed in previous experiments, thus setting a new benchmark in the field. These results pave the way for future technologies such as thermal diodes, radiative heat engines, and infrared camouflage.