Toggle light / dark theme

Ultrawide-bandgap semiconductors—such as diamond—are promising for next-generation electronics due to a larger energy gap between the valence and conduction bands, allowing them to handle higher voltages, operate at higher frequencies, and provide greater efficiency compared to traditional materials like silicon.

However, their make it challenging to probe and understand how charge and heat move on nanometer-to-micron scales. Visible light has a very limited ability to probe nanoscale properties, and moreover, it is not absorbed by diamond, so it cannot be used to launch currents or rapid heating.

Now, researchers at JILA, led by JILA Fellows and University of Colorado physics professors Margaret Murnane and Henry Kapteyn, along with graduate students Emma Nelson, Theodore Culman, Brendan McBennett, and former JILA postdoctoral researchers Albert Beardo and Joshua Knobloch, have developed a novel microscope that makes examining these materials possible on an unprecedented scale.

A new technique involving terahertz light has enabled the creation of chiral states in non-chiral materials, offering exciting possibilities for future technological applications.

Chirality is a key property of matter that plays a crucial role in many biological, chemical, and physical processes. In chiral solids, this property enables unique interactions with chiral molecules and polarized light, making them valuable for applications in catalysis, sensing, and optical devices. However, chirality in these materials is typically fixed during their formation—once a crystal is grown, its left-and right-handed forms, or enantiomers, cannot be switched without melting and recrystallizing it.

Now, researchers from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) and the University of Oxford have discovered a way to induce chirality in a non-chiral crystal using terahertz light. This breakthrough allows them to create either left-or right-handed enantiomers on demand. Published in Science, this finding opens exciting new possibilities for studying and controlling complex materials in non-equilibrium conditions.

“The floor is lava,” proclaimed Willaim W in the live chat as more than 400 people watched shortly after midnight Jan. 25 while lava once again fountained from the north vent in the southwest portion of Halema’uma’u Crater within Kaluapele, the summit caldera, of Kīlauea.

Episode 6 of the Big Island volcano’s latest eruption, which began the week of Christmas 2024, is underway as lava flows onto the crater floor from a geiser that started at about 11:28 p.m. Jan. 24.

Lava was fountaining to between 10 and 20 feet high within about 2 hours after Hawaiian Volcano Observatory reported spattering that kicked off at about 6 p.m. Jan. 24 increased to spatter fountaining and spiked in frequency and intensity.

This groundbreaking 2D material boasts 100 trillion mechanical bonds per square centimeter, offering unmatched strength without the weight. Discover how this innovation could redefine military armor and keep our heroes safer than ever.

The human brain is formed by a complex network of neural connections and most of them link neighboring brain regions, which are also the most studied to date. But a recent neuroscientific study by Pompeu Fabra University (UPF) and the University of Oxford, published in Proceedings of the National Academy of Sciences, has revealed that connections between distant brain regions, though rarer and less frequent, play a fundamental role in explaining brain dynamics.

The role of these long-range connections could be likened to those of an airport hub, which—with long-haul flights—directly connects different parts of the world without the need for stopovers, which would make the trip far longer. In the case of the brain, long-range connections serve to transmit information more quickly and directly between distant regions (without the need to go through all the successive neighboring regions that separate them). This yields optimal and efficient information processing.

The connections between distant regions of the brain are activated both spontaneously in a resting state and when performing numerous cognitive functions in our daily lives, which allow us to carry out specific tasks. For example, for as simple a task as remembering an image we have just seen, the brain connects the (which deals with ) with the occipital lobe, which deals with image perception.

A study by the University of the Basque Country (UPV/EHU) demonstrates that the drug WIN55,212–2 protects the brain and reverses early cognitive damage caused by dementia, while also explaining its mechanism of action.

Over two decades of research conducted by the Neurochemistry and Neurodegeneration group at UPV/EHU, led by Dr. Rafael Rodríguez-Puertas, has uncovered a promising pathway for developing therapies aimed at improving memory in cases of cognitive impairment caused by neurodegenerative diseases like Alzheimer’s.

Alzheimer’s disease is a progressive neurological disorder that primarily affects older adults, leading to memory loss, cognitive decline, and behavioral changes. It is the most common cause of dementia. The disease is characterized by the buildup of amyloid plaques and tau tangles in the brain, which disrupt cell function and communication. There is currently no cure, and treatments focus on managing symptoms and improving quality of life.

A research team at KAIST has identified the core gene expression networks regulated by key proteins that fundamentally drive phenomena such as cancer development, metastasis, tissue differentiation from stem cells, and neural activation processes. This discovery lays the foundation for developing innovative therapeutic technologies.

A joint research team led by Professors Seyun Kim, Gwangrog Lee, and Won-Ki Cho from the Department of Biological Sciences has uncovered essential mechanisms controlling gene expression in animal cells.

The findings were published on January 7 in the journal Nucleic Acids Research in a paper titled “Single-molecule analysis reveals that IPMK enhances the DNA-binding activity of the transcription factor SRF.”