Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

It’s elementary: Problem-solving AI approach tackles inverse problems used in nuclear physics and beyond

Solving life’s great mysteries often requires detective work, using observed outcomes to determine their cause. For instance, nuclear physicists at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility analyze the aftermath of particle interactions to understand the structure of the atomic nucleus.

This type of subatomic sleuthing is known as the inverse problem. It is the opposite of a forward problem, where causes are used to calculate the effects. Inverse problems arise in many descriptions of physical phenomena, and often their solution is limited by the experimental data available.

That’s why scientists at Jefferson Lab and DOE’s Argonne National Laboratory, as part of the QuantOm Collaboration, have led the development of an artificial intelligence (AI) technique that can reliably solve these types of puzzles on supercomputers at large scales.

Sensitive yet tough photonic devices are now a reality

Engineers at the University of California San Diego have achieved a long-sought milestone in photonics: creating tiny optical devices that are both highly sensitive and durable—two qualities that have long been considered fundamentally incompatible.

This rare coexistence of sensitivity and durability could lead to a new generation of photonic devices that are not only precise and powerful but also much easier and cheaper to produce at scale. This could open the door to advanced sensors and technologies ranging from highly sensitive medical diagnostics and environmental sensors to more secure communication systems, all built into tiny, chip-scale devices.

Achieving both properties has been a challenge because devices that are sensitive enough to detect tiny changes in their environment are often fragile and prone to breaking down if even the smallest imperfections arise during manufacturing. This makes them expensive and difficult to produce at scale. Meanwhile, making such devices more rugged often means compromising their precision.

Smart amplifier cuts power consumption, paving way for more qubits and less decoherence

Quantum computers can solve extraordinarily complex problems, unlocking new possibilities in fields such as drug development, encryption, AI, and logistics. Now, researchers at Chalmers University of Technology in Sweden have developed a highly efficient amplifier that activates only when reading information from qubits. The study was published in the journal IEEE Transactions on Microwave Theory and Techniques.

Thanks to its smart design, it consumes just one-tenth of the power consumed by the best amplifiers available today. This reduces decoherence and lays the foundation for more with significantly more qubits and enhanced performance.

Bits, which are the building blocks of a conventional computer, can only ever have the value of 1 or 0. By contrast, the common building blocks of a quantum computer, quantum bits or qubits, can exist in states having the value 1 and 0 simultaneously, as well as all states in between in any combination.

Revolutionary “Material Maze” Could Prevent Bacterial Infections

Scientists used patterned plastic surfaces to trick bacteria into halting their own spread. These designs may prevent infections without the need for antimicrobial drugs. Scientists at the University of Nottingham have identified surface patterns that significantly reduce the ability of bacteria

Vanishing Populations: Millions Are Missing From Global Census Counts

Foreign aid cuts will make the ongoing ‘quiet crisis’ even worse, according to experts. Researchers warn that millions of people worldwide are missing from census and survey data, leaving policymakers without crucial information about the populations they are responsible for. They describe a ‘

2032 ‘City-Killer’ Impact Threatens Earth’s Satellites, Study Finds

If a huge asteroid smashes into the Moon in 2032, the gigantic explosion would send debris streaming towards Earth that would threaten satellites and create a spectacular meteor shower, according to researchers.

Earlier this year there were briefly fears that the 60-metre-wide (200-foot-wide) asteroid called 2024 YR4, which is big enough to level a city, would strike Earth on December 22, 2032.

It was given the highest chance – 3.1 percent – of hitting our home planet that scientists have ever measured for such a giant space rock.