The next annular solar eclipse will occur on Feb. 17, 2026.

Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.
MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity.
The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.
Quantum entanglement – once dismissed by Albert Einstein as “spooky action at a distance” – has long captured the public imagination and puzzled even seasoned scientists.
But for today’s quantum practitioners, the reality is rather more mundane: entanglement is a kind of connection between particles that is the quintessential feature of quantum computers.
Though these devices are still in their infancy, entanglement is what will allow them to do things classical computers cannot, such as better simulating natural quantum systems like molecules, pharmaceuticals, or catalysts.
Electronic devices lose energy as heat due to the movement of electrons. Now, a breakthrough in nanoengineering has produced a new kind of switch that matches the performance of the best traditional designs while pushing beyond the power-consumption limits of modern electronics.
Researchers from the University of Michigan have achieved what scientists have been trying to execute for a long time: designing electronics that harness excitons—pairs of an electron and a corresponding hole (a missing electron) bound together forming a charge-neutral particle—instead of electrons.
The newly designed nanoengineered optoexcitonics (NEO) device featured a tungsten diselenide (WSe2) monolayer on a tapered silicon dioxide (SiO2) nanoridge. The switch achieved a 66% reduction in losses compared to traditional switches while surpassing an on–off ratio of 19 dB at room temperature, a performance that rivals the best electronic switches available on the market.
MBA, PhD, is the Chief Executive Officer of The Parker Institute for Cancer Immunotherapy (PICI — https://www.parkerici.org/), a 501c3 nonprofit organization driving the next generation of cancer treatment by accelerating the development of breakthrough immune therapies to turn all cancers into curable diseases.
Dr. Knudsen most recently served as the Chief Executive Officer of the American Cancer Society (ACS) and ACS Cancer Action Network (ACS CAN), where she led both organizations through a period of transformative growth, significantly expanding research investments, advocacy reach, and direct patient support initiatives. Under her leadership, ACS evolved into a unified, high-performing enterprise, increasing revenue by more than 30 percent and broadening its impact to serve over 55 million lives annually. Moreover, Dr. Knudsen developed and scaled innovative programs that included joint ventures and an impact innovation arm to accelerate progress against cancer.
Prior to ACS, Dr. Knudsen served as Executive Vice President of Oncology Services at Jefferson Health and Enterprise Director of the Sidney Kimmel Comprehensive Cancer Center, growing a multi-state oncology network and spearheading advancements in translational cancer research that increased early access to the most advanced cancer care.
A globally recognized expert in prostate cancer, Dr. Knudsen has authored over 200 scientific publications and generated practice-changing discoveries.
Dr. Knudsen held leadership roles with organizations including the National Cancer Institute Board of Scientific Advisors, the Association of American Cancer Institutes, and the American Association for Cancer Research. She currently serves on the boards of Exai Bio, Paradigm Health, and Research!America, and advises multiple biotech ventures including ArteraAI and Transcarent.
Dr. Knudsen holds numerous awards for her scientific and healthcare accomplishments, and this year will be honored with the Allen Lichter Visionary Leader Award from the American Society of Clinical Oncology (ASCO), recognizing her lifetime achievement of outstanding contributions to the field of oncology.