Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Tiny engine runs hotter than the sun to probe the frontiers of thermodynamics

Scientists have created the world’s hottest engine running at temperatures hotter than those reached in the sun’s core. The team from King’s College London and collaborators believe their platform could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold—the subject of last year’s Nobel Prize in Chemistry.

Outlined in Physical Review Letters, the engine is a very small, microscopic particle suspended at a low pressure using . This electric trap is called a Paul Trap. The researchers can exponentially increase the heat of the trapped particle by applying a noisy voltage to one of the electrodes levitating it.

While traditionally engines have been associated with motors, in science their definition is much simpler—engines convert one form of energy to . Here, that is heat to movement.

Nanoscale X-ray imaging reveals bulk altermagnetism in MnTe

Magnetic materials have been known since ancient times and play an important role in modern society, where the net magnetic order offers routes to energy harvesting and data processing. It is the net magnetic moment of ferromagnets that has so far been key to their applications, with an alternative type of magnetic material, the antiferromagnet, deemed “useless” by their discoverer Louis Néel in his Nobel Prize lecture.

In recent years, there has been increasing interest in antiferromagnets, which offer a number of exciting advantages for technologies including robust order and ultrafast dynamics—however with the challenge that they are hard to detect and manipulate electrically.

The recent discovery of a new type of magnetic order—the altermagnet—has overturned this view: by combining antiferromagnetic ordering with ferromagnet-like properties such as spintronic effects, they promise a multitude of advantages for future applications.

Ultrafast laser pulses reveal solid-state bandgaps in motion

The bandgap, i.e. the energy gap between the highest lying valence and the lowest lying conduction band, is a defining property of insulating solids, governing how they absorb light and conduct electricity. Tracking how a bandgap changes under strong laser excitation has been a long-standing challenge, since the underlying processes unfold on femtosecond timescales and are difficult to track directly, especially for wide-bandgap dielectrics.

In a between the Max-Born-Institute, ARCNL Amsterdam, and Aarhus University, researchers have now shown that extreme ultraviolet (XUV) high-harmonic interferometry can provide direct access to such dynamics.

Using pairs of phase-locked near-infrared laser pulses, the team measured and their intensity-dependent shift in the generated high-order harmonics from silica glass (SiO2) and magnesium oxide (MgO).

Caltech Shatters Record With 6,100-Qubit Quantum Array

The neutral-atom platform appears promising for scaling up quantum computers. To solve some of the toughest challenges in physics, chemistry, and other fields, quantum computers will eventually need extremely large numbers of qubits. Unlike classical bits that can only represent a 0 or a 1, qubits

Researchers Have Discovered a Way To Simulate the Universe — on a Laptop

Cosmologists can now explore data faster than ever before with a new emulator. As astronomers continue to uncover the mysteries of the universe, their work generates increasingly vast and intricate data sets. A recent innovation is making it possible for researchers to process these enormous collec

Radical Plan to Beam ‘Sunlight on Demand’ at Night Sparks Concerns

A proposed constellation of satellites has astronomers very worried. Unlike satellites that reflect sunlight and produce light pollution as an unfortunate byproduct, the ones by US startup Reflect Orbital would produce light pollution by design.

The company promises to produce “sunlight on demand” with mirrors that beam sunlight down to Earth so solar farms can operate after sunset.

It plans to start with an 18-metre test satellite named Earendil-1 which the company has applied to launch in 2026. It would eventually be followed by about 4,000 satellites in orbit by 2030, according to the latest reports.

/* */