Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Notable Recent Events in Gene Therapy Translation January 2023 to January 2026

Clinical gene therapy has seen a lot of big wins and a lot of big setbacks over the past few years. To help myself keep track of recent important events in the field, I decided to write up this catalogue of key happenings. Though the landscape is ever-evolving, this resource should nonetheless be useful in the relatively near future and perhaps serve as a historical record later on. It has been fascinating to read up on the industry’s dynamics! I hope any readers out there who encounter this page will find my catalogue similarly interesting and valuable.

My website version: [ https://logancollinsblog.com/2026/02/03/notable-recent-event…uary-2026/](https://logancollinsblog.com/2026/02/03/notable-recent-event…uary-2026/)

Substack version: [ https://loganthrashercollins.substack.com/p/notable-recent-e…ne-therapy](https://loganthrashercollins.substack.com/p/notable-recent-e…ne-therapy)


PDF version: Notable Recent Events in Gene Therapy Translation January 2023 to January 2026.

Skeletal Muscle Aging and Stem Cells

Aging impairs the regenerative capacity of skeletal muscle in part through the functional decline of the resident stem cell population called satellite cells. With age, satellite cells exhibit a loss of quiescence, altered proliferation, and impaired differentiation, leading to incomplete myogenesis following injury. Mitochondria are central to stem cell function, providing ATP, regulating redox homeostasis, and integrating several signaling pathways during lineage progression. While mitochondrial remodeling and function is essential for supporting the metabolic demands of myogenesis, the extent to which these processes are altered in aged satellite cells across cell states remains unclear. To address this, we performed a comparative transcriptomic analysis of young and aged satellite cells in quiescent, proliferating, and early differentiating states using three publicly available microarray datasets. Our results reveal that aged satellite cells exhibit a dysregulated senescence profile, characterized by the simultaneous upregulation of both senescence-inducing and-inhibiting genes, suggestive of a metastable senescence state. These features persisted during early differentiation, where aged cells also displayed increased expression of senescence-associated secretory phenotype (SASP) components, potentially contributing to a pro-inflammatory niche. Mitochondrial gene expression was relatively stable in quiescent cells but showed marked remodeling upon activation, particularly in aged cells. While young satellite cells upregulated transcriptional programs related to mitochondrial function, aged cells exhibited broader and less coordinated responses enriched for stress, apoptotic, and metabolic pathways. Despite evidence of mitochondrial stress, mitophagy gene activation remained limited in aged cells, raising the possibility of impaired organelle quality control. Together, our findings highlight age-associated disruptions in both senescence and mitochondrial remodeling programs across the satellite cell lifecycle. These transcriptional changes likely underlie impaired regenerative responses in aging muscle and identify potential targets for rejuvenating muscle stem cell function.

Aging is accompanied by a progressive and multifactorial decline in the function of virtually all physiological systems, contributing to increased frailty, disease burden, and reduced regenerative capacity in older individuals (López-Otín et al., 2013; Dodig et al., 2019; Tenchov et al., 2023). While this decline reflects the combined effects of genomic instability, proteostatic stress, metabolic alterations, and chronic low-grade inflammation, a critical component of age-associated tissue deterioration is the loss of stem cell function (López-Otín et al., 2013; Dodig et al., 2019; Tenchov et al., 2023). Adult stem cell populations are essential for tissue maintenance and regeneration throughout life, replenishing differentiated cells during homeostasis and responding to injury with rapid expansion and lineage-specific differentiation (Hawke and Garry, 2001; Dumont et al., 2015b; Dumont et al., 2015a).

From organoid culture to manufacturing: technologies for reproducible and scalable organoid production

Despite the absence of a fully established regulatory framework or unified technological standard for industrial-and clinical-grade organoid biomanufacturing yet, substantial progress has been made toward building the technical and institutional infrastructure required for scalability and reproducibility. The Organisation for Economic Co-operation and Development (OECD) introduced the Good In Vitro Method Practices (GIVIMP)19, an international quality-assurance framework that defines laboratory quality systems, method qualification, reference controls, equipment calibration, and data integrity—principles that now potentially serve as quantitative benchmarks for process validation in organoid production. Complementing this, the NIH Standardized Organoid Modeling (SOM) Center was recently established to promote the development of organoid platforms that are reproducible, robust, and broadly accessible for translational biomedical and pharmaceutical research.

Expanding these standardization efforts, a recent publication introduced the Essential Guidelines for Manufacturing and Application of Organoids, delineating a systematic workflow encompassing cell sourcing, culture optimization, quality control, and biobanking logistics20. Their framework identifies organ-specific critical quality attributes (CQAs)—including growth-factor composition, morphological fidelity, and quantitative analytical metrics—and recommends standardized cryopreservation conditions (~100–200 organoids per vial) to enhance batch comparability. Likewise, a recent study established quantitative criteria for human intestinal organoid standardization, specifying cell-line provenance, minimum lineage composition thresholds (e.g., ≥30% enterocytes), and molecular marker expression profiles consistent with physiological differentiation21. Taken together, these coordinated initiatives—from international organizations to national agencies and individual laboratories—represent an emerging global framework toward reproducible, quality-controlled, and scalable organoid biomanufacturing, laying the groundwork for eventual regulatory convergence and clinical translation.

In response to these prevailing limitations and in alignment with global standardization trends, a range of engineering strategies has been developed, shifting the paradigm from organoid culture to organoid manufacturing by enabling reproducible and scalable organoid production. These strategies broadly focus on two goals: improving reproducibility by minimizing uncontrolled variation in the culture environment as well as by regulating intrinsic morphogenetic processes, and enhancing scalability by increasing productivity and throughput. To this end, recent advances can be categorized into three major domains: cellular engineering approaches that regulate morphogenetic processes through programmed cell organization; material-based strategies that establish defined and controllable environmental cues; and platform-or system-level innovations that enable high-throughput and automated workflows. Together, these innovative engineering advances mark aion toward more standardized, efficient production workflows.

Percutaneous Cryoablation of Metastatic Lesions from Colorectal Cancer: Efficacy and Feasibility with Survival and Cost-Effectiveness Observations

To assess feasibility, complications, local tumor recurrences, overall survival (OS) and estimates of cost-effectiveness for multi-site cryoablation (MCA) of oligo-metastatic colorectal cancer (mCRC) in a prospective study.

Massive Global Study Rewrites the Biology of Type 2 Diabetes

A large global genetics study shows that many key drivers of Type 2 diabetes operate outside the bloodstream. Scientists are getting a clearer picture of why Type 2 diabetes is so hard to pin down. In a major international project led in part by the University of Massachusetts Amherst and Helmholtz

Bacteria Form Stronger Mars Bricks Despite Toxic Soil

“When the effect of perchlorate on just the bacteria is studied in isolation, it is a stressful factor,” said Swati Dubey. “But in the bricks, with the right ingredients in the mixture, perchlorate is helping.”


How can engineers design bricks on Mars for future habitats despite the toxic Martian regolith, also called perchlorates? This is what a recent study published in PLOS One hopes to address as an international team of scientists investigated how bacteria can be used to construct strong bricks on Mars despite the presence of perchlorates. This study has the potential to help scientists, engineers, and future Mars astronauts develop novel methods for designing future Mars habitats.

For the study, the researchers tested perchlorates on Martians bricks built with regolith simulant and bacteria, also called biocementation, to ascertain how the perchlorates affected the integrity of the bricks, and specifically how the bacteria responded to the perchlorates. The goal of the study was to ascertain how perchlorates could influence Martian brick construction methods using bacteria, the latter of which has been explored in past studies using the soil bacterium Sporosarcina pasteurii. In the end, the researchers found that despite the perchlorates slowing the growth of the bacteria within the bricks, the process resulted in stronger bricks.

/* */