Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Current and emerging therapeutic landscape for metabolic dysfunction-associated steatohepatitis

Globally, metabolic dysfunction-associated steatotic liver disease (MASLD) is now the most common chronic liver disease, affecting up to one in three people in the general population, with an estimated increase in prevalence of more than 50% in the last three decades. The rise in prevalence of MASLD will result in substantial increases in the number patients with decompensated cirrhosis and those developing liver cancer by 2030. Despite the complex pathobiology of MASLD, two major breakthroughs in phase 3 clinical trials now herald an era of licensed therapies for MASLD.

MIM triggers formin to Arp2/3-based actin assembly in membrane remodeling in Drosophila embryos

Debasmita Mitra, Georgina K. Goddard, Sanjana S, Aparna K, Tom H. Millard, and Richa Rikhy (IISER Pune) show that Drosophila Missing-in-Metastasis (DMIM) (also called MTSS1) promotes Rac1 mediated branched actin network formation and endocytosis to drive rapid, cyclical plasma membrane remodeling during syncytial divisions in Drosophila embryos. Actin-rich villous protrusions in the apical caps in interphase are depleted in metaphase, concurrent with furrow extension between adjacent nuclei. MIM depletion results in a loss of furrow extension and in longer, more abundant apical protrusions containing the formin diaphanous. Branched actin networks promoted by MIM are in balance with bundled actin networks induced by RhoGEF2 and diaphanous. Cyclical recruitment of MIM to the cortex promotes localization of active Rac, the WAVE regulatory complex, and the Arp2/3 complex to drive endocytic membrane remodeling. These findings identify MIM as an integrator of actin and endocytic dynamics that enables rapid membrane remodeling during Drosophila syncytial division cycles.

For decades, memory-like responses in immune cells have remained unexplained

Katherine Y. King & team now identify epigenetic changes in hematopoietic stem and progenitor cells in a mycobacterial infection model that are retained in downstream macrophages, providing mechanistic mediators of innate immune memory and explaining persistence of central trained immunity.


1Graduate Program in Cancer and Cell Biology.

2Department of Pediatrics, Division of Infectious Disease, Texas Children’s Hospital and Baylor College of Medicine.

3Stem Cells and Regenerative Medicine Center.

4Department of Molecular and Human Genetics.

Moore’s law: the famous rule of computing has reached the end of the road, so what comes next?

That sense of certainty and predictability has now gone, and not because innovation has stopped, but because the physical assumptions that once underpinned it no longer hold.

So what replaces the old model of automatic speed increases? The answer is not a single breakthrough, but several overlapping strategies.

One involves new materials and transistor designs. Engineers are refining how transistors are built to reduce wasted energy and unwanted electrical leakage. These changes deliver smaller, more incremental improvements than in the past, but they help keep power use under control.

A strange in-between state of matter is finally observed

When materials become just one atom thick, melting no longer follows the familiar rules. Instead of jumping straight from solid to liquid, an unusual in-between state emerges, where atomic positions loosen like a liquid but still keep some solid-like order. Scientists at the University of Vienna have now captured this elusive “hexatic” phase in real time by filming an ultra-thin silver iodide crystal as it melted inside a protective graphene sandwich.

NASA Launches Its Most Powerful, Efficient Supercomputer

NASA is announcing the availability of its newest supercomputer, Athena, an advanced system designed to support a new generation of missions and research projects. The newest member of the agency’s High-End Computing Capability project expands the resources available to help scientists and engineers tackle some of the most complex challenges in space, aeronautics, and science.

Housed in the agency’s Modular Supercomputing Facility at NASA’s Ames Research Center in California’s Silicon Valley, Athena delivers more computing power than any other NASA system, surpassing the capabilities of its predecessors, Aitken and Pleiades, in power and efficiency. The new system, which was rolled out in January to existing users after a beta testing period, delivers over 20 petaflops of peak performance – a measurement of the number of calculations it can make per second – while reducing the agency’s supercomputing utility costs.

“Exploration has always driven NASA to the edge of what’s computationally possible,” said Kevin Murphy, chief science data officer and lead for the agency’s High-End Computing Capability portfolio at NASA Headquarters in Washington. “Now with Athena, NASA will expand its efforts to provide tailored computing resources that meet the evolving needs of its missions.”

Astronomers just revealed a stunning new view of the Milky Way in radio colors

A groundbreaking new radio image reveals the Milky Way in more detail than ever before, using low-frequency radio “colors” to map the galaxy’s hidden structures. The image is sharper, deeper, and wider than anything previously released, uncovering both star-forming regions and the remains of ancient stellar explosions. Scientists can now better distinguish where stars are being born versus where they’ve met dramatic ends. The discovery opens powerful new ways to study the life cycle of stars and the shape of our galaxy.

$99,000 smart observatory captures the cosmos with Canon optics

One would think that a US$99,000 telescope requires specialist training and a thick instruction manual. But the new Hyperia from French company Vaonis flips that assumption on its head. It’s powerful enough for professional observatories yet runs entirely from a simple smartphone app.

Vaonis has been bringing astrophotography to the masses for years now. The company has stripped away the complexity, allowing anyone to snap spectacular images of galaxies and nebulae hundreds of light-years away without wrestling with multi-component setups requiring serious technical chops – all wrapped in Vaonis’s trademark minimalist design.

The Hyperia started as a custom build for the Palais de la Découverte in Paris, which needed a next-gen digital observatory. After wrapping up the installation, Vaonis saw the bigger picture and decided to sell the system commercially.

/* */