Toggle light / dark theme

Some recent dark matter experiments have begun employing levitated optomechanical systems. Kilian et al. explored how levitated large-mass sensors and dark matter research intersect.

Levitated sensors are quantum technology platforms that use magnetic fields, electric fields, or light to levitate and manipulate particles, which become very sensitive to weak forces. These sensors are especially well suited for detecting candidates in regimes where current large-scale experiments suffer limitations, such as ultralight and certain hidden-sector candidates.

The authors discussed how these advantages make levitated sensors, including optically trapped silica nanoparticles, magnetically trapped ferromagnets, and levitated superconducting particles, ideal for detecting different dark matter candidates.

Getting tips from the design of the human body.

Scientists create bone-inspired cement, over five times stronger than concrete.


Researchers at the University of Princeton have developed a cement paste that is 5.6 times stronger than cement, mortar, and other conventional cement-based construction materials.

Question Can microplastics reach the olfactory bulb in the human brain?

Findings This case series analyzed the olfactory bulbs of 15 deceased individuals via micro-Fourier transform infrared spectroscopy and detected the presence of microplastics in the olfactory bulbs of 8 individuals. The predominant shapes were particles and fibers, with polypropylene being the most common polymer.

Meaning The presence of microplastics in the human olfactory bulb suggests the olfactory pathway as a potential entry route for microplastics into the brain, highlighting the need for further research on their neurotoxic effects and implications for human health.

Not only will these export controls be increasingly difficult to implement, but they would also unlikely be in the best interests of the United States. Indeed, the current trajectory of export policies risks unintended consequences for little long-term strategic benefit. These include a decline in the competitiveness of the United States, a decoupling from U.S.-developed technology, and uncertainty for the domestic tech industry, amongst other risks.

A Better Way Forward

For the United States to maintain its global AI leadership, it must focus on competition and outcompeting its geopolitical rivals in the development, implementation, and diffusion of AI-based systems domestically and internationally instead of an expert-control-first approach. Defending against the rise of digital authoritarianism requires embracing competition and openness, enabling effective market access, and supporting the diffusion of U.S. AI-enabled technology and governance standards.

“To be able to manage important aspects of my environment and control access to entertainment gives me back the independence that I’m losing,” Mark said.

The chip sits on a blood vessel and senses his brain activity, which is then translated into specific commands and sent to his digital devices for recognition. In a video shared by Synchron, Mark is seen mentally tapping on icons on his devices, ordering Alexa to turn the lights on and off, and checking his security camera to see who is outside — all without using his hands or voice.

“Synchron’s BCI is bridging the gap between neurotechnology and consumer tech, making it possible for people with paralysis to regain control of their environment,” Thomas Oxley, the company’s chief executive, said. “While many smart home systems rely on voice or touch, we are sending control signals directly from the brain, bypassing the need for these inputs. We’re thrilled … to address a critical unmet need for millions of people with mobility and voice impairment.”

Mathematician Bernhard Riemann was born #OTD in 1826.


Bernhard Riemann was another mathematical giant hailing from northern Germany. Poor, shy, sickly and devoutly religious, the young Riemann constantly amazed his teachers and exhibited exceptional mathematical skills (such as fantastic mental calculation abilities) from an early age, but suffered from timidity and a fear of speaking in public. He was, however, given free rein of the school library by an astute teacher, where he devoured mathematical texts by Legendre and others, and gradually groomed himself into an excellent mathematician. He also continued to study the Bible intensively, and at one point even tried to prove mathematically the correctness of the Book of Genesis.

Although he started studying philology and theology in order to become a priest and help with his family’s finances, Riemann’s father eventually managed to gather enough money to send him to study mathematics at the renowned University of Göttingen in 1846, where he first met, and attended the lectures of, Carl Friedrich Gauss. Indeed, he was one of the very few who benefited from the support and patronage of Gauss, and he gradually worked his way up the University’s hierarchy to become a professor and, eventually, head of the mathematics department at Göttingen.


Glycoproteins are a diverse group of proteins that have carbohydrate chains covalently attached to their polypeptide chains. These carbohydrate chains, or glycans, can vary greatly in size, complexity, and composition, leading to a wide range of glycoprotein functions and properties.

The attachment of glycans to proteins typically occurs in two main types of linkages: N-linked glycosylation, where the carbohydrate is attached to the nitrogen atom of asparagine side chains, and O-linked glycosylation, where it attaches to the oxygen atom of serine or threonine side chains. These modifications can significantly impact a glycoprotein’s structure, stability, and function.

The current Galileo system consists of 28 satellites in all, and now, two more are expected to join the constellation. All of these satellites are in medium-Earth orbit besides two, which were incorrectly placed, the ESA says.

The first-stage booster supporting this mission is on its 22nd flight, SpaceX says, and Tuesday’s potential launch is expected to be a test of its recovery capabilities.

During a Galileo mission earlier this year, SpaceX was not able to recover the booster that supported the mission because it needed to go deep into space to deliver the payload. However, SpaceX says that the expended booster gave officials valuable data that helped them make design and operational changes.

In context: Upscaling tech like Nvidia’s DLSS can enhance lower-resolution images and improve image quality while achieving higher frame rates. However, some gamers are concerned that this technology might become a requirement for good performance – a valid fear, even though only a few games currently list system requirements that include upscaling. As the industry continues to evolve, how developers address these concerns remains to be seen.

AI, in its current primitive form, is already benefiting a wide array of industries, from healthcare to energy to climate prediction, to name just a few. But when asked at the Goldman Sachs Communacopia + Technology Conference in San Francisco last week which AI use case excited him the most, Nvidia CEO Jensen Huang responded that it was computer graphics.

“We can’t do computer graphics anymore without artificial intelligence,” he said. “We compute one pixel, we infer the other 32. I mean, it’s incredible… And so we hallucinate, if you will, the other 32, and it looks temporally stable, it looks photorealistic, and the image quality is incredible, the performance is incredible.”