Toggle light / dark theme

The New York Times Apr 09, 2021 17:29:04 IST

Evidence is mounting that a tiny subatomic particle seems to be disobeying the known laws of physics, scientists announced Wednesday, a finding that would open a vast and tantalizing hole in our understanding of the universe. The result, physicists say, suggests that there are forms of matter and energy vital to the nature and evolution of the cosmos that are not yet known to science.

“This is our Mars rover landing moment,” said Chris Polly, a physicist at the Fermi National Accelerator Laboratory, or Fermilab, in Batavia, Illinois, who has been working toward this finding for most of his career.

Wildlife Care And Combating Emerging Zoonotic Diseases — Dr. Suzan Murray, D.V.M., D.A.C.Z.M. Smithsonian’s National Zoo and Conservation Biology Institute, Program Director, Global Health Program.


Dr. Suzan Murray, D.V.M., D.A.C.Z.M. is a board-certified zoo veterinarian at the Smithsonian Conservation Biology Institute (SCBI) and serves as both the Program Director of the Global Health Program and as SCBI’s chief wildlife veterinary medical officer.

Dr. Murray leads an interdisciplinary team engaged in worldwide efforts to address health issues in endangered wildlife and combat emerging infectious diseases of global significance, including zoonotic diseases.

New, reversible CRISPR method can control gene expression while leaving underlying DNA sequence unchanged.

Over the past decade, the CRISPR-Cas9 gene editing system has revolutionized genetic engineering, allowing scientists to make targeted changes to organisms’ DNA. While the system could potentially be useful in treating a variety of diseases, CRISPR-Cas9 editing involves cutting DNA strands, leading to permanent changes to the cell’s genetic material.

Now, in a paper published online in Cell on April 9, researchers describe a new gene editing technology called CRISPRoff that allows researchers to control gene expression with high specificity while leaving the sequence of the DNA unchanged. Designed by Whitehead Institute Member Jonathan Weissman, University of California San Francisco assistant professor Luke Gilbert, Weissman lab postdoc James Nuñez and collaborators, the method is stable enough to be inherited through hundreds of cell divisions, and is also fully reversible.

Although universal fault-tolerant quantum computers – with millions of physical quantum bits (or qubits) – may be a decade or two away, quantum computing research continues apace. It has been hypothesized that quantum computers will one day revolutionize information processing across a host of military and civilian applications from pharmaceuticals discovery, to advanced batteries, to machine learning, to cryptography. A key missing element in the race toward fault-tolerant quantum systems, however, is meaningful metrics to quantify how useful or transformative large quantum computers will actually be once they exist.

To provide standards against which to measure quantum computing progress and drive current research toward specific goals, DARPA announced its Quantum Benchmarking program. Its aim is to re-invent key quantum computing metrics, make those metrics testable, and estimate the required quantum and classical resources needed to reach critical performance thresholds.

“It’s really about developing quantum computing yardsticks that can accurately measure what’s important to focus on in the race toward large, fault-tolerant quantum computers,” said Joe Altepeter, program manager in DARPA’s Defense Sciences Office. “Building a useful quantum computer is really hard, and it’s important to make sure we’re using the right metrics to guide our progress towards that goal. If building a useful quantum computer is like building the first rocket to the moon, we want to make sure we’re not quantifying progress toward that goal by measuring how high our planes can fly.”