The Fort Worth-based company claims to be the first helicopter manufacturer to present at CES.
In the new study, researchers instead aimed to reduce the amount of Nav1.7 that cells make in the first place. Bioengineer Ana Moreno and her colleagues at the University of California, San Diego, modified the “molecular scissors” of the gene editor CRISPR. Changes to the cutting enzyme Cas9 caused it to bind to DNA that makes Nav1.7 without slicing it, effectively preventing the Nav1.7 protein from being made. The researchers enhanced this silencing effect by hitching Cas9 to a repressor, another protein that inhibits gene expression.
The researchers tested the Cas9 approach—and a similar approach using another gene-editing protein known as a zinc finger—in mice given the chemotherapy drug paclitaxel, which can cause chronic nerve pain in cancer patients. The team measured pain by poking the animals’ paws with a thin nylon filament. Paclitaxel prompted mice to withdraw from gentler pokes, indicating that a normally nonpainful stimulus had become painful. But 1 month after an injection of the gene-silencing treatment into their spinal fluid, rodents responded much like mice that had never gotten paclitaxel, whereas untreated rodents remained hypersensitive, the team reports today in.
The approach could also prevent pain when given before paw injections of either the inflammation-causing compound carrageenan or a molecule called BzATP that increases pain sensitivity. And treated mice behaved no differently from untreated ones when their opposite paw—not inflamed by carrageenan—was exposed to a hot surface. That’s an encouraging initial sign that the injection didn’t silence Nav1.7 so completely that it creates a dangerous numbness to all pain, Moreno says. Behavioral tests so far haven’t turned up evidence of potentially concerning side effects; the injections didn’t appear to alter the animals’ movement, cognition, or anxiety levels.
Geoscientists at Sandia National Laboratories used 3D-printed rocks and an advanced, large-scale computer model of past earthquakes to understand and prevent earthquakes triggered by energy exploration.
Injecting water underground after unconventional oil and gas extraction, commonly known as fracking, geothermal energy stimulation and carbon dioxide sequestration all can trigger earthquakes. Of course, energy companies do their due diligence to check for faults—breaks in the earth’s upper crust that are prone to earthquakes—but sometimes earthquakes, even swarms of earthquakes, strike unexpectedly.
Sandia geoscientists studied how pressure and stress from injecting water can transfer through pores in rocks down to fault lines, including previously hidden ones. They also crushed rocks with specially engineered weak points to hear the sound of different types of fault failures, which will aid in early detection of an induced earthquake.
Spurred on by quantum experiments that scramble the ordering of causes and their effects, some physicists are figuring out how to abandon causality altogether.
TOWARDS a METAMATERIALLY-BASED ANALOGUE SENSOR FOR TELESCOPE EYEPIECES jeremy batterson.
(NB: Those familiar with photography or telescopy can skip over the “elements of a system,” since they will already know this.)
In many telescopic applications, what is desired is not a more magnified image, but a brighter image. Some astronomical objects, such as the Andromeda galaxy or famous nebulae like M42 are very large in apparent size, but very faint. If the human eye could see the Andromeda galaxy, it would appear four times wider than the Moon. The great Orion nebula M42 is twice the apparent diameter of the Moon.
Astrophotographers have an advantage over visual astronomers in that their digital sensors can be wider than the human pupil, and thus can accommodate larger exit pupils for brighter images.
Summary: Study identified 300 “hub genes” that appear to control separate gene networks in brain tissue samples. The SAMD3 gene appears to be a master regulator to control the activity of many of the gene hubs and the genes the hubs control.
Source: UT Southwestern Medical Center.
UT Southwestern scientists have identified key genes involved in brain waves that are pivotal for encoding memories. The findings, published online this week in Nature Neuroscience, could eventually be used to develop novel therapies for people with memory loss disorders such as Alzheimer’s disease and other forms of dementia.
Researchers have developed a new data transfer system that is 20 times faster than USB 3.0.
This combines high-frequency silicon chips with a polymer cable as thin as a strand of hair. The system could boost energy efficiency in data centres and lighten the loads of electronics-rich spacecraft. Researchers presented their breakthrough at the recent IEEE International Solid-State Circuits Conference, held virtually.
“There’s an explosion in the amount of information being shared between computer chips – cloud computing, the Internet, big data. And a lot of this happens over conventional copper wire,” says Jack Holloway, who led the research. Holloway completed his PhD in MIT’s Department of Electrical Engineering and Computer Science last year and currently works for Raytheon.
It was the 6th launch and landing for this Falcon 9 first stage.
A SpaceX Falcon 9 rocket launched a new batch of 60 Starlink internet satellites to orbit early this morning (March 11) and nailed its landing on a floating platform at sea.
“This is a fascinating study of gut microbiome in older adulthood,” wrote Barbara Bendlin from the University of Wisconsin, Madison. “While the investigators did not look at brain health or cognitive outcomes, it’s interesting to see that they found that healthy aging was accompanied by gut microbiomes that became increasingly more unique to each person starting in middle age. This type of divergence is also observed in brain aging.” (Full comment below.)
Past studies have shown that the gut microbiome undergoes rapid changes in the first three years of life, followed by a longer period of relative stability, then more change once again in later years (Yatsunenko et al., 2012; O’Toole and Jeffery, 2015). Research has also found that centenarians have fewer of the gut microbes commonly seen in younger, healthy people. Instead, they live with an increasingly rarefied microbiota (Kim et al., 2019). This suggests that gut microbiomes become increasingly personalized as people get older, but little is known about how these gut profiles affect the aging process or longevity.
To find out, first author Tomasz Wilmanski and colleagues analyzed gut microbiomes, personal traits, and clinical data from more than 9000 people 18 to 101 years old. They came from three independent cohorts. One was a group of 3653 people aged 18 to 87 who had signed up with Arivale, a now-defunct scientific wellness company co-founded by systems biology pioneer Leroy Hood and Price. Arivale provided personalized wellness coaching by collecting and analyzing data on participants’ genomes and other systems, including their gut microbiomes. Hood founded the Institute for Systems Biology.
All of us, even physicists, often process information without really knowing what we’re doing.