Toggle light / dark theme

Robot swarms have, to date, been constructed from artificial materials. Motile biological constructs have been created from muscle cells grown on precisely shaped scaffolds. However, the exploitation of emergent self-organization and functional plasticity into a self-directed living machine has remained a major challenge. We report here a method for generation of in vitro biological robots from frog (Xenopus laevis) cells. These xenobots exhibit coordinated locomotion via cilia present on their surface. These cilia arise through normal tissue patterning and do not require complicated construction methods or genomic editing, making production amenable to high-throughput projects.

Google has announced an update to its Developer Program Policy that will help to prevent applications from viewing which other apps are installed on an Android device. The company states that they consider installed apps to be private user information and therefore, aim to protect Android users by keeping this data secure.

That is to say, Google will limit which apps can request the QUERY_ALL_PACKAGES permission, presently mandatory for application targeting API level 30 (Android 11) and above that wish to query the list of application a user has installed for an Android 11 or later .

From now on, the QUERY_ALL_PACKAGES permission will only be available when the core functionality of an app in question must query any of the device’s installed applications. Therefore, in order to dispute this , developers will have to provide reasonable evidence for how querying the API of an Android devices installed applications is absolutely necessary in order for that device to properly function.

This Video Explains Cellular Compartmentation And Protein Sorting (Protein Transport in Endoplasmic reticulum)

Thank You For Watching.
Please Like And Subscribe to Our Channel: https://www.youtube.com/EasyPeasyLearning.
Like Our Facebook Page: https://www.facebook.com/learningeasypeasy/
Join Our Facebook Group: https://www.facebook.com/groups/460057834950033
Support Our Channel: https://www.patreon.com/supereasypeasy

The Ingenuity helicopter has touched down on the surface of the red planet. NASA confirmed that it was successfully deployed on April 3, 2021. Full Story: https://www.space.com/mars-helicopter-ingenuity-touches-down-martian-surface.

Watch NASA’s Mars helicopter unfold like a butterfly: https://www.space.com/mars-helicopter-unfolds-legs-perseverance-rover-video.

Credit: Space.com | imagery & audio courtesy: NASA/JPL-Caltech | produced & edited by Steve Spaleta (http://www.twitter.com/stevespaleta)

Michio Kaku is a professor of theoretical physics at City College, New York, a proponent of string theory but also a well-known populariser of science, with multiple TV appearances and several bestselling books behind him. His latest book, The God Equation, is a clear and accessible examination of the quest to combine Einstein’s general relativity with quantum theory to create an all-encompassing “theory of everything” about the nature of the universe.


The physicist on Newton finding inspiration amid the great plague, how the multiverse can unite religions, and why a ‘theory of everything’ is within our grasp.

Astronomers have announced the Uranus, the seventh planet from the Sun, is an ice giant planet in the outer Solar System. Like Jupiter and Saturn, Uranus and its rings appear to mainly produce X-rays by scattering solar X-rays, but some may also come from.


Astronomers have detected X-rays from Uranus for the first time, using NASA ’s Chandra X-ray Observatory. This result may help scientists learn more about this enigmatic ice giant planet in our solar system.

Uranus is the seventh planet from the Sun and has two sets of rings around its equator. The planet, which has four times the diameter of Earth, rotates on its side, making it different from all other planets in the solar system. Since Voyager 2 was the only spacecraft to ever fly by Uranus, astronomers currently rely on telescopes much closer to Earth, like Chandra and the Hubble Space Telescope, to learn about this distant and cold planet that is made up almost entirely of hydrogen and helium.

This is the best estimate scientists have made for the size of the invisible Higgs sector. The next step is to collect more data and hone their techniques to narrow in on these invisible decays.

“It’s like looking at something very small,” Rifki says. “Right now, we can’t see anything other than what we already know. But that doesn’t mean there is nothing new there. It could just mean that we need a more powerful lens.”

Lindert sees this collaboration as a good example of what theorists and experimentalists can accomplish when they combine their skills and work together.

Summary: Two key metrics of signal detection theory, perceptual certainty and response bias, correlate with changes in cognitive fatigue.

Source: Kessler Foundation.

A team of New Jersey researchers has shown that changes in perceptual certainty and response bias, two central metrics of signal detection theory (SDT), correlate with changes in cognitive fatigue. They also show that SDT measures change as a function of changes in brain activation.

A step towards ultra-precise measurements of antihydrogen.


These two constraints are so fundamental that it would be difficult to formulate a consistent understanding of nature without them. Nevertheless, it is worth testing whether they really hold up in ultra-precise measurements carried out using the most modern technologies, because any deviation, however small, would force scientists to radically rethink the basis of our theories of physics. Writing in Nature, Baker et al.1 (members of the ALPHA collaboration) report a major step towards this goal. They have slowed down atoms of antihydrogen — the antimatter counterpart of hydrogen — to unprecedentedly low velocities by bathing them in a beam of ultraviolet laser light. This could allow measurements of the atoms to be made with exceptionally high precision.

Antihydrogen is the simplest stable atom that consists only of antimatter particles, namely an antiproton and an antielectron (a positron). Measurements of antihydrogen therefore provide an ideal way to test the symmetry between matter and antimatter, but such experiments present formidable obstacles. In 1995, 11 antihydrogen atoms were produced from reactions in a particle accelerator at CERN, Europe’s particle-physics laboratory near Geneva, Switzerland, and hurtled down a 10-metre-long vacuum tube at nine-tenths of the speed of light2. Each atom existed for barely a few tens of nanoseconds before being destroyed by striking a particle detector.

Much of the ensuing research into antihydrogen has involved inventing new ways of producing samples of increasingly slower-moving atoms. This was eventually achieved by confining and mixing clouds of antiprotons and positrons in magnetic fields that acted as ion traps to produce antihydrogen atoms. The atoms were then confined by another complex configuration of magnetic fields that acted as a neutral-atom trap3,4. The ALPHA collaboration at CERN’s Antiproton Decelerator facility can now routinely trap 1000 antihydrogen atoms for many hours in this way. This has allowed an atomic frequency of antihydrogen, which corresponds to the energy of a characteristic atomic transition, to be measured5 with a fractional precision of 2 parts in 1012. No deviation from the corresponding frequency of hydrogen was observed, which is exactly the outcome expected from CPT symmetry.