Toggle light / dark theme

Roundworms don’t have eyes or the light-absorbing molecules required to see. Yet, new research shows they can somehow sense color. The study, published in the journal Science, suggests worms use this ability to assess the risk of feasting on potentially dangerous bacteria that secrete blue toxins. The researchers pinpointed two genes that contribute to this spectral sensitivity and are conserved across many organisms, including humans.

“It’s amazing to me that a —with neither eyes nor the molecular machinery used by eyes to detect colors—can identify and avoid a toxic bacterium based, in part, on its ,” says H. Robert Horvitz, the David H. Koch Professor of Biology at MIT, a member of the McGovern Institute for Brain Research and the Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute Investigator, and the co-senior author of the study. “One of the joys of being a biologist is the opportunity to discover things about nature that no one has ever imagined before.”

The roundworm in question, Caenorhabditis elegans, is only about a millimeter long. Despite their minute stature and simple nervous system, these nematodes display a complex repertoire of behaviors. They can smell, taste, sense touch, react to temperature, and even escape or change their feeding patterns in response to bright, . Although researchers once thought that these bury themselves deep in soil, it’s becoming increasingly clear that C. elegans prefers compost heaps above ground that offer some sun exposure. As a result, roundworms may have a need for light-and color-sensing capabilities after all.

Summary: Since 2010, there has been an absolute rise in mortality for adults without a college degree. For those with higher education experience, mortality rates have decreased during the same time period.

Source: Princeton University.

Life expectancy in the United States dropped in 2020 due to COVID-19, but, for American adults without a college degree, the increase in mortality in adulthood occurred even earlier, according to a new study authored by Anne Case and Sir Angus Deaton of Princeton University.

“If you don’t do both, you’re not going to get very far,” he says. He wants to bring “carbon drawdown” technologies into the conversation with genetically modified trees.

Last year, DeLisi organized a workshop with a team of heavy hitters — Sir Richard Roberts (biochemist, Nobel laureate, and staunch advocate for GMOs), Val Giddings (a geneticist at the Information Technology and Innovation Foundation), and researchers from Oak Ridge National Laboratory — to create solutions, like genetically modifying carbon-hungry trees.

And they are close.

Doctors take a microscopic craft loaded with cancer-killing chemicals, inject it into the human body, and drive it to a malignant tumor to deliver its payload before making a quick exit. The plan is to move to clinical trials by 2023.


Chemotherapy and radiation can cause too much collateral damage to treat some brain tumors. Crumb-sized robots could be the solution.

Bacteria have been found exploiting quantum physics to survive.


Oxygen is life to animals like us. But for many species of microbe, the smallest whiff of the highly reactive element puts their delicate chemical machinery at risk of rusting up.

The photosynthesizing bacterium Chlorobium tepidum has evolved a clever way to shield its light-harvesting processes from oxygen’s poisonous effects, using a quantum effect to shift its energy production line into low gear.

A study conducted by scientists from the University of Chicago and Washington University in St. Louis has shown how the bacterium throws a spanner into its quantum resonance to ‘tune’ its system so that it loses energy in the presence of oxygen, preventing it from wrecking its photosynthetic apparatus.

Global battery recycling industries are a new beginning for old energy storage.


When your kid looks at you with those big, innocent eyeballs and asks, “Where do lithium ion electric car batteries go when they die?” Without hesitation—because kids that age still believe you know everything—you read them this article:

Mighty Volkswagen—the carmaker that certainly looks like it is going to lead the world in the production of electric cars someday—now looks like it might lead the world in recycling electric car batteries, with the announcement that it has opened its first battery recycling plant in Salzgitter, Germany. OK, at a projected 3600 batteries recycled a year, maybe it won’t lead the world, but it will certainly lead battery recycling in Lower Saxony, between Hildesheim and Braunschweig. Globally speaking, all this battery recycling stuff is still being sorted out.

Several years after scientists discovered what was considered the oldest crater a meteorite made on the planet, another team found it’s actually the result of normal geological processes.

During fieldwork at the Archean Maniitsoq structure in Greenland, an international team of scientists led by the University of Waterloo ’s Chris Yakymchuk found the features of this region are inconsistent with an impact crater. In 2012, a different team identified it as the remnant of a three-billion-year-old meteorite crater.

“Zircon crystals in the rock are like little time capsules,” said Yakymchuk, a professor in Waterloo’s Department of Earth and Environmental Sciences. “They preserve ancient damage caused by shockwaves you get from a meteorite impact. We found no such damage in them.”