Toggle light / dark theme

As the digital revolution has now become mainstream, quantum computing and quantum communication are rising in the consciousness of the field. The enhanced measurement technologies enabled by quantum phenomena, and the possibility of scientific progress using new methods, are of particular interest to researchers around the world.

Recently two researchers at Tampere University, Assistant Professor Robert Fickler and Doctoral Researcher Markus Hiekkamäki, demonstrated that two– interference can be controlled in a near-perfect way using the spatial shape of the photon. Their findings were recently published in the prestigious journal Physical Review Letters.

“Our report shows how a complex light-shaping method can be used to make two quanta of light interfere with each other in a novel and easily tuneable way,” explains Markus Hiekkamäki.

TOKYO — India is rapidly closing the gap with China in minting new unicorns — privately held startups valued at $1 billion or more — highlighting growing investor appetite for tech startups in the country as the pandemic accelerates adoption of digital services.

Over the past year, 15 companies from India raised capital at a valuation of $1 billion or more for the first time, according to CB Insights and company announcements gathered by Nikkei Asia. Ten of them became unicorns in 2021. By comparison, only two of the 16 companies from China that joined the list over the past year did so in 2021, according to CB Insights.

A successful listing of online food delivery company Zomato, which recently filed a draft prospectus with India’s securities regulator, would set the stage for many of these unicorns to follow suit. Zomato, a loss-making company operating in a nascent industry once considered too risky to invest, is planning to raise 82.5 billion rupees ($1.1 billion), including through a pre-IPO placement.

Long-haul aviation, like everything else in the human world, needs to be totally decarbonized, and in the race to zero emissions for international airliners, liquid-hydrogen powertrains look like one of the only viable possibilities.


Airbus is working on a number of hydrogen-powered aircraft, and it’s just found a new angle on cryogenic liquid H2 fuel: using it to supercool the powertrain down to superconducting temperatures, possibly unlocking huge weight and efficiency savings.

O,.o! Woah


A never-ending detonation could be the key to hypersonic flight and space planes that can seamlessly fly from Earth into orbit. And now, researchers have recreated the explosive phenomenon in the lab that could make it possible.

Detonations are a particularly powerful kind of explosion that move outward faster than the speed of sound. The massive explosion that rocked the port of Beirut in Lebanon last August was a detonation, and the widespread destruction it caused demonstrates the huge amounts of energy they can produce.

In 1884, Edwin Abbott wrote the novel Flatland: A Romance in Many Dimensions as a satire of Victorian hierarchy. He imagined a world that existed only in two dimensions, where the beings are 2D geometric figures. The physics of such a world is somewhat akin to that of modern 2D materials, such as graphene and transition metal dichalcogenides, which include tungsten disulfide (WS2), tungsten diselenide (WSe2), molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2).

Modern 2D materials consist of single-atom layers, where electrons can move in two dimensions but their motion in the third dimension is restricted. Due to this ‘squeeze’, 2D materials have enhanced optical and that show great promise as next-generation, ultrathin devices in the fields of energy, communications, imaging and quantum computing, among others.

Typically, for all these applications, the 2D materials are envisioned in flat-lying arrangements. Unfortunately, however, the strength of these materials is also their greatest weakness—they are extremely thin. This means that when they are illuminated, light can interact with them only over a tiny thickness, which limits their usefulness. To overcome this shortcoming, researchers are starting to look for new ways to fold the 2D materials into complex 3D shapes.

Last August, several dozen military drones and tanklike robots took to the skies and roads 40 miles south of Seattle. Their mission: Find terrorists suspected of hiding among several buildings.

So many robots were involved in the operation that no human operator could keep a close eye on all of them. So they were given instructions to find—and eliminate—enemy combatants when necessary.

The mission was just an exercise, organized by the Defense Advanced Research Projects Agency, a blue-sky research division of the Pentagon; the robots were armed with nothing more lethal than radio transmitters designed to simulate interactions with both friendly and enemy robots.

This new species, Desulfovibrio diazotrophicus, is from a family of bacteria that survive and grow on sulfur-containing compounds. They are known as sulfate-reducing bacteria (SRB) and a biproduct of their activity is the release of the gas hydrogen sulfide, which has a characteristic ‘rotten egg’ smell. Whilst this is unpleasant for those around you, there is also some concern that it is detrimental for gut health; the presence of SRB has been associated with gut inflammation, inflammatory bowel disease (IBD) and colorectal cancer.

Despite this, evidence for a definitive link between SRB and chronic disease has never been established. For a start, they are very widespread; around half the human population have SRB in their gut, so maybe not all of them are bad? They may even have positive effects. They release energy and nutrients from the material that other bacteria produce when they are fermenting the food we eat.

This uncertainty triggered interest from the , including scientists from the Quadram Institute (QI), who want to understand exactly what SRB do in the microbiome and how they interact with food and the gut. Very few species have been characterized, most from Western countries. To broaden the picture, QI researchers have been working with Professor Chen Wei and colleagues from Jiangnan University, China to isolate and characterize SRB from the intestinal tract of healthy Chinese and British people. The research was funded by the Biotechnology and Biological Sciences Research Council, part of UKRI.