Toggle light / dark theme

Move over, gene-editing proteins—there’s a smaller, cheaper, more specific genetic engineering tool on the block: DNAzymes—small DNA molecules that can function like protein enzymes.

Researchers at the University of Illinois Urbana-Champaign have developed a technique that, for the first time, allows DNAzymes to target and cut double-stranded DNA, overcoming a significant limitation of the technology. DNAzymes have been used in biosensing, DNA computing and many other applications. However, when it comes to genetic engineering applications such as gene editing or , they have faced a challenge: DNAzymes have only been able to target sites on single-stranded DNA, while the DNA coding for genes in cells is double-stranded. The researchers published their new technique in the Journal of the American Chemical Society.

“DNAzymes have many advantages, including higher stability, smaller size and lower cost than protein enzymes. These advantages perfectly fit the requirement for genetic engineering tools,” said study leader Yi Lu, a professor of chemistry at Illinois. “No DNAzymes could alter double-stranded DNA until this work. By making that happen, we open the door for DNAzymes to enter the entire world of genetic engineering.”

Rather than steal credentials or hold data for ransom, a recent campaign observed by Sophos prevents people from visiting sites that offer illegal downloads.

The objective of most malware is some kind of gain — financial or otherwise — for the attackers who use it. However, researchers recently observed a unique malware with a single intent: Blocking the infected computers from visiting websites dedicated to software piracy.

The malware (which SophosLabs principal researcher Andrew Brandt called “one of the strangest cases I’ve seen in a while”) works by modifying the HOSTS file on the infected system, in a “a crude but effective method to prevent a computer from being able to reach a web address,” he wrote in a report published Thursday.

Cybersecurity experts reported the detection of at least four flaws in Dell SupportAsist’s BIOSConnect feature, the exploitation of which would allow threat actors to deploy remote code to affected devices. It should be noted that this software is preinstalled by default on most Dell computers running Windows systems, and BIOSConnect allows remote firmware update and some operating system recovery features.

This set of flaws received a score of 8.3÷10 on the Common Vulnerability Scoring System (CVSS) scale, and its exploitation would allow privileged remote hackers on the target system to impersonate an official Dell service in order to take control of the operating system boot process and thus break any security controls enabled. So far no active exploitation attempts or a functional attack have been detected for the abuse of these flaws.

The report was presented by security firm Eclypsium, whose researchers say the problem lies in at least 129 Dell devices, including desktops, laptops and electronic tablets used by nearly 130 million users worldwide.

Quick, accurate and easy-to-use, CRISPR-Cas9 has made genomic editing more efficient—but at the same time has made human germline editing much more feasible, erasing many of the ethical barriers erected to prevent scientists from editing the genes of heredity.

“The ethical debate about what is now called human gene editing has gone on for more than 50 years,” writes Dr. John H. Evans, co-director of the Institute for Practical Ethics at the University of California, San Diego. “For nearly that entire time, there has been consensus that a moral divide exists between somatic and human germline editing.”

In an essay published in the Proceedings of the National Academy of Sciences (PNAS), Evans contends that many of the potent bioethical arguments that once made germline editing a verboten concept, have begun to dissolve in the era of CRISPR.

Research led by Kent and the STFC Rutherford Appleton Laboratory has resulted in the discovery of a new rare topological superconductor, LaPt3P. This discovery may be of huge importance to the future operations of quantum computers.

Superconductors are vital materials able to conduct electricity without any resistance when cooled below a certain temperature, making them highly desirable in a society needing to reduce its energy consumption.

They manifest quantum properties on the scale of everyday objects, making them highly attractive candidates for building computers that use quantum physics to store data and perform computing operations, and can vastly outperform even the best supercomputers in certain tasks. As a result, there is an increasing demand from leading tech companies like Google, IBM and Microsoft to make quantum computers on an industrial scale using superconductors.