Toggle light / dark theme

GPT-J and GPT-Neo, the open-source alternatives to GPT-3, are among the best NLP models as of this writing. But using them effectively can take practice. Few-shot learning is an NLP technique that works very well with these models.

GPT-J and GPT-Neo.

GPT-Neo and GPT-J are both open-source NLP models, created by EleutherAI (a collective of researchers working to open source AI).

Its cloud seeding operations are part of an ongoing mission to generate precipitation in the Middle East country, which has an average rainfall of just four inches.


The enhanced rain is created using drone technology that unleashes electrical charges into clouds in order for them to clump together and form precipitation.

The National reported the heavy rainfall caused waterfalls to appear in the city of Ail Ain and made driving conditions hazardous.

In an effort to curb the country’s sinking water table, the UAE invested $15 million in nine different rain-making projects in 2017.

The findings, published in Nature Communications, could have important implications for human health: minis have been found at every type of synapse studied so far, and defects in miniature neurotransmission have been linked to range of neurodevelopmental disorders in children. Figuring out how a reduction in miniature neurotransmission changes the structure of synapses, and how that in turn affects behavior, could help to better understand neurodegenerative disorders and other brain conditions.


Summary: Study reveals how miniature release events help to keep neurons intact and preserve motor neuron function in aging insects.

Source: EPFL

Neurons communicate through rapid electrical signals that regulate the release of neurotransmitters, the brain’s chemical messengers. Once transmitted across a neuron, electrical signals cause the juncture with another neuron, known as a synapse, to release droplets filled with neurotransmitters that pass the information on to the next neuron. This type of neuron-to-neuron communication is known as evoked neurotransmission.

Representatives of numerous pathogenic fungal species are finding new habitat on microplastic particles in the soil and could thus be one of the possible causes of an increase in fungal infections. Researchers from Bayreuth, Hannover and Munich demonstrated this in a new study. Using high-throughput methods, the scientists analyzed fungal communities from soil samples taken from sites near human settlements in western Kenya. The findings of this research have been published in the journal Scientific Reports.

This study is the first to focus on fungal communities on in the . Many of the species detected belong to groups of fungi that are pathogenic to plants, animals and humans. Pathogenic microfungi are able to colonize the otherwise inhospitable surfaces of particles due to their characteristic adhesive lifestyle. Furthermore, they are able to withstand strong solar radiation and heat to which they are exposed on soil surfaces.

“We were able to observe all stages of fungal biofilm formation on the microplastic particles recovered from the . In doing so, we were able to demonstrate that fungi not only grow, but also reproduce in the so-called plastisphere. The data we obtained from microscopic examinations and DNA analyses supports the assumption that fungi systematically colonize microplastics in the soil. Moreover, they provide evidence that microplastics in soil accumulate certain pathogenic fungal species: some species dangerous to humans, including black fungi and cryptococcal yeast fungi, are present on the surfaces of microplastic particles in higher concentrations than in the surrounding soil. Our study therefore justifies the presumption that microplastics in soil are a potential source of fungal infections,” says Gerasimos Gkoutselis M.Sc., lead author of the study and doctoral student at the University of Bayreuth’s Department of Mycology.