Toggle light / dark theme

Acoustic Cluster Therapy (ACT®)consists of clusters of gas-filled microbubbles and oil microdroplets.


During the last decade ACT® has been evaluated preclinically in various cancer models and combined with different drugs. It was first observed that ACT was able to increase the fluorescence from a tumor when sonoenhancement was combined with fluorescent macromolecules (Wamel 2016, Figure 1). Here it was found that already one minute after sonoenhancement, fluorescence had increased in the tumor compared to a non-treated control, followed by a fluorescence uptake that remained for several hours. Subsequently, ACT has been tested therapeutically in preclinical models of prostate cancer (Wamel 2016), pancreatic cancer (Kotopoulis 2016, Ng 2022), colon cancer (Bush 2019) and breast cancer (Bush 2020). The combination of ACT and drug was significantly better than the drug alone in all these studies, with quite large numbers of complete remissions. Combining ACT with the drug nab-paclitaxel for treatment of prostate cancer resulted in complete tumor remission in all tested animals. This shows that ACT provides sonoenhancement across very different cancer types and with different types of drugs, which increases the likelihood of seeing effects also in clinical trials as the tumor models collectively represents a variety of cancer biology.

Side effects and toxicity have also been tested in various small animal models during the last decade. During treatment, no bleeding or macroscopic damage was observed, and pathological evaluation has not identified microscopic damages. ACT was extensively tested for systemic toxicities, including studies in rats and dogs where ultrasound to the heart and liver was used to activate the ACT bubbles, and no significant adverse effects have been detected.

Sonoenhancement describes the actions of ACT. This is distinct from sonoporation describing the mode of action of ultrasound with the conventional free-flowing microbubbles, which are designed for ultrasound contrast enhancement. The mode of action of ACT is that the microclusters expand and lodge in tumor capillaries. This gives multiple effects in the tumor that can be separated into primary and secondary effects. The primary effect of ACT is the oscillations inside the capillaries, which affects the vascular wall and propagate into the extravascular domain of the tumor. This is clearly different from the action achieved with conventional microbubbles. An activated ACT bubble has a volume 1,000 times that of a conventional microbubble and a large contact area with endothelial cells. An activated ACT bubble will temporarily block the capillary and oscillations will affect the entire inner surface of the vessel. The volume of the bubble and the amplitude of the oscillations results in biomechanical work that is 1,000 times greater than that of conventional microbubbles.

Astronomers have made a groundbreaking discovery of binary star systems, consisting of a white dwarf and a main sequence star, within young star clusters.

This discovery opens up new avenues for understanding stellar evolution and could provide insights into the origins of phenomena such as supernovas and gravitational waves.

Breakthrough Discovery in Star Clusters.

The biggest battleground in the robotaxi race may be winning public trust.


Autonomous vehicles are already clocking up millions of miles on public roads, but they face an uphill battle to convince people to climb in to enjoy the ride.

A few weeks ago, I took a tour of San Francisco in one of Waymo’s self-driving cars. As we drove around the city, one thing that struck me was how comfortable people had become with not seeing a driver. Not only were there multiple driverless vehicles on any given street at any given time, but tourists no longer had their mouths agape as one drove by. The technology has become a familiar sight.

“Quantum physicists are realizing that they can’t ignore the fact that the reference frame Alice is anchored to … might have multiple possible locations at once.”

The quantum nature of reference frames can even affect the perceived order of events.

In a paper this year, the physicist Časlav…


The reference frames from which observers view quantum events can themselves have multiple possible locations at once — an insight with potentially major ramifications.

The rise of quantum computing is more than a technological advancement; it marks a profound shift in the world of cybersecurity, especially when considering the actions of state-sponsored cyber actors. Quantum technology has the power to upend the very foundations of digital security, promising to dismantle current encryption standards, enhance offensive capabilities, and recalibrate the balance of cyber power globally. As leading nations like China, Russia, and others intensify their investments in quantum research, the potential repercussions for cybersecurity and international relations are becoming alarmingly clear.

Imagine a world where encrypted communications, long thought to be secure, could be broken in mere seconds. Today, encryption standards such as RSA or ECC rely on complex mathematical problems that would take traditional computers thousands of years to solve. Quantum computing, however, changes this equation. Using quantum algorithms like Shor’s, a sufficiently powerful quantum computer could factorize these massive numbers, effectively rendering these encryption methods obsolete.

This capability could give state actors the ability to decrypt communications, access sensitive governmental data, and breach secure systems in real time, transforming cyber espionage. Instead of months spent infiltrating networks and monitoring data flow, quantum computing could provide immediate access to critical information, bypassing traditional defenses entirely.

ABSTRACT. We present a detailed study of the large-scale shock front in Stephan’s Quintet, a by-product of past and ongoing interactions. Using integral-field spectroscopy from the new William Herschel Telescope Enhanced Area Velocity Explorer (WEAVE), recent 144 MHz observations from the LOFAR Two-metre Sky Survey, and archival data from the Very Large Array and JWST, we obtain new measurements of key shock properties and determine its impact on the system. Harnessing the WEAVE large integral field unit’s field of view (90 |$\times$| 78 arcsec|$^{2}$|⁠), spectral resolution (⁠|$R\sim 2500$|⁠), and continuous wavelength coverage across the optical band, we perform robust emission-line modelling and dynamically locate the shock within the multiphase intergalactic medium with higher precision than previously possible. The shocking of the cold gas phase is hypersonic, and comparisons with shock models show that it can readily account for the observed emission-line ratios. In contrast, we demonstrate that the shock is relatively weak in the hot plasma visible in X-rays (with Mach number of |$\mathcal {M}\sim 2\!-\!4$|⁠), making it inefficient at producing the relativistic particles needed to explain the observed synchrotron emission. Instead, we propose that it has led to an adiabatic compression of the medium, which has increased the radio luminosity 10-fold. Comparison of the Balmer line-derived extinction map with the molecular gas and hot dust observed with JWST suggests that pre-existing dust may have survived the collision, allowing the condensation of H|$_2$| – a key channel for dissipating the shock energy.

A massive collision of galaxies sparked by one traveling at a scarcely-believable 2 million mph (3.2 million km/h) has been seen in unprecedented detail by one of Earth’s most powerful telescopes.

The dramatic impact was observed in Stephan’s Quintet, a nearby galaxy group made up of five galaxies first sighted almost 150 years ago.

It sparked an immensely powerful shock akin to a “sonic boom from a jet fighter”—the likes of which are among the most striking phenomena in the universe.

Strong interactions between subatomic particles like electrons occur when they are at a specific energy level known as the van Hove singularity. These interactions give rise to unusual properties in quantum materials, such as superconductivity at high temperatures, potentially ushering in exciting technologies of tomorrow.

Research suggests that allow electrons to flow only on their surface to be promising . However, the quantum properties of these materials remain relatively unexplored.

A study co-led by Nanyang Asst Prof Chang Guoqing of NTU’s School of Physical and Mathematical Sciences identified two types of van Hove singularities in the topological materials rhodium monosilicide (RhSi) and cobalt monosilicide (CoSi).