Toggle light / dark theme

Another missing piece has just been added to our knowledge of cosmic phenomena. The LIGO, Virgo and KAGRA collaborations have announced the first detection of gravitational waves[1] resulting from the ‘mixed’ merger between a black hole and a neutron star.[2] The discovery, published on June 29, 2021 in Astrophysical Journal Letters, involves CNRS researchers working within the Virgo scientific collaboration.

Although it has only been only a few years since the very first observation of gravitational waves, the technique has yielded an extensive repertoire of phenomena involving massive cosmic objects. The LIGO and Virgo detectors have already observed mergers of pairs (or binaries) of black holes and, less frequently, of neutron stars. However, gravitational waves detected in January 2020 provide evidence of the existence of a new type of system. The signals, named GW200105 and GW200115 from their dates of detection, were produced by a process that had been predicted but never observed until now: the coalescence of ‘mixed pairs’ called NSBH pairs, each made up of a neutron star and a black hole.[3]

Gravitational waves contain valuable information about their source, such as the mass of the components making up the binary. Analysis of the signals revealed that GW200105 resulted from the merger, some 900 million years ago, of a black hole and a neutron star, respectively 8.9 times and 1.9 times more massive than the Sun, while GW200115 originated from an NSBH pair which coalesced around 1 billion years ago, with masses 5.7 and 1.5 times greater than the Sun. The difference in mass between the components of the system indicates that they are indeed mixed binaries: the mass of the heavier object corresponds to that of a black hole while the mass of the lighter object is consistent with that of a neutron star. The difference between the two masses could also explain why no light signals were detected by telescopes. When a neutron star approaches a black hole it can theoretically be torn apart by tidal forces, causing flares of electromagnetic radiation. However, in the two cases observed, the black hole, being much more massive, could have gobbled up the neutron star in a single mouthful, leaving no trace.

Planetary scientists estimate that each year, about 500 meteorites survive the fiery trip through Earth’s atmosphere and fall to our planet’s surface. Most are quite small, and less than 2% of them are ever recovered. While the majority of rocks from space may not be recoverable due to ending up in oceans or remote, inaccessible areas, other meteorite falls are just not witnessed or known about.

But new technology has upped the number known falls in recent years. Doppler radar has detected meteorite falls, as well as all-sky camera networks specifically on the lookout for meteors. Additionally, increased use of dashcams and security cameras have allowed for more serendipitous sightings and data on fireballs and potential meteorite falls.

A team of researchers is now taking advantage of additional technology advances by testing out drones and machine learning for automated searches for small meteorites. The drones are programmed to fly a grid search pattern in a projected “strewn field” for a recent meteorite fall, taking systematic pictures of the ground over a large survey area. Artificial intelligence is then used to search through the pictures to identify potential meteorites.

An ultra-high-speed shipping port logistics system has been presented that’s reported capable of shifting up to 2800 containers a day, covering hundreds of kilometers in minutes.


Hyperloop Transport Technologies has presented an ultra-high-speed shipping port logistics system it says can shift up to 2800 containers a day, covering hundreds of kilometers in minutes – while decreasing emissions wherever it’s rolled out.

The whole thing would be like a giant cargo-carrying version of the pneumatic tube systems that once blasted thousands of messages around every hour, back when things were all black and white. As long as those things were around, innovators dreamed of one day building scaled-up versions big enough to move passengers and cargo.

The 2021 Space Renaissance Congress Acta is now online, and the voting session for the new President and Board of Directors is now open.

Dear SRI friends and supporters.

Two key milestones of our 3rd World Congress are now accomplished.

**1) The complete acta of the presented papers and speeches** is now online, for all of us to be viewed and reviewed. https://2021.spacerenaissance.space/index.php/2021-space-ren…ress-acta/

What the FENCE program hopes to do is to create event-based cameras that are more intelligent thanks to the use of brain-mimicking or neuromorphic circuits. What these do is to drastically reduce the amount of data that needs to be handled by disregarding irrelevant parts of the image. Instead of dealing with an entire scene, the event-based camera focuses only on the pixels that have changed.


DARPA has announced the start of the Fast Event-based Neuromorphic Camera and Electronics (FENCE) program, which is designed to make computer vision cameras more efficient by mimicking how the human brain processes information. Three teams of scientists led by Raytheon, BAE Systems, and Northrop Grumman, are tasked with developing an infrared (IR) camera system that needs to process less data, operates faster, and uses less power.

Modern imaging cameras are growing increasingly sophisticated, but they are also becoming victims of their own success. While state-of-the-art cameras can capture high-resolution images and track objects with great precision, they do so by processing large amounts of data, which takes time and power.

According to DARPA, this is fine when the task is something like tracking an airplane in a clear blue sky, but if the background becomes cluttered or starts to change, as is often the case in military operations, these cameras can soon be overwhelmed.