Toggle light / dark theme

Cells contain machinery that duplicates DNA into a new set that goes into a newly formed cell. That same class of machines, called polymerases, also build RNA messages, which are like notes copied from the central DNA repository of recipes, so they can be read more efficiently into proteins. But polymerases were thought to only work in one direction DNA into DNA or RNA. This prevents RNA messages from being rewritten back into the master recipe book of genomic DNA. Now, Thomas Jefferson University researchers provide the first evidence that RNA segments can be written back into DNA, which potentially challenges the central dogma in biology and could have wide implications affecting many fields of biology.

“This work opens the door to many other studies that will help us understand the significance of having a mechanism for converting RNA messages into DNA in our own cells,” says Richard Pomerantz, Ph.D., associate professor of biochemistry and molecular biology at Thomas Jefferson University. “The reality that a human can do this with high efficiency, raises many questions.” For example, this finding suggests that RNA messages can be used as templates for repairing or re-writing genomic DNA.

The work was published June 11th in the journal Science Advances.

A new study has revealed that humans — along with all other mammals and reptiles — have the capability of producing venom. The study, published on Monday (March 29) in the journal Proceedings of the National Academy of Sciences, said humans apparently have a “tool kit” to produce venom.

According to a report in Live Science, humans already produce a key protein used in many venom systems.

It said kallikreins, a kind of protein that digest other proteins, are secreted in saliva and are a key part of many venoms. They are a natural starting point for theoretically venomous humans.

Using the full system, farmers could reduce costs by 40% and chemical usage by up to 95%.


Small Robot Company (SRC), a British agritech startup for sustainable farming, has developed AI-enabled robots – named Tom, Dick and Harry – that identify and kill individual weeds with electricity. These agricultural robots could reduce the use of harmful chemicals and heavy machinery, paving the way for a new approach to sustainable crop farming.

The startup has been working on automated weed killers since 2017, and this April officially launched Tom, the first commercial robot currently operating on three UK farms. Dick is still in the prototype phase, and Harry is still in development.

Scientists have successfully grown liver tissue capable of functioning for 30 days in the lab as part of NASA’s Vascular Tissue Challenge.

In 2016, NASA put forth this competition to find teams that could “create thick, vascularized human organ tissue in an in-vitro environment to advance research and benefit medicine on long-duration missions and on Earth,” according to an agency challenge description. Today (June 9), the agency announced not one, but two winners of the challenge.

The results of the study have been extremely encouraging, with 12 of the 13 patients showing signs of improved neurological functionality shortly after the treatment was administered. More than half of the patients showed significant improvement, including regaining the ability to walk, as well as regaining fine motor control (such as the ability to use their hands).

Unlike many stem cell treatments which have been successful in the past, this approach does not require the patient to have a reserve of stem cells available (such as cord blood cells), and instead relies on stem cells which are obtained directly from the patient. A bone marrow sample was extracted in order to first acquire a sample of stem cells (known as mesenchymal stem cells), which were then grown (expanded) in a laboratory for the number of weeks before being injected into the patient’s bloodstream via intravenous injection. These cells would then migrate to the spinal cord and repair the damaged tissue.



Amazon Web Services (AMZN.O) said it will open data centers in Israel, with the announcement coming weeks after Israel signed a deal with AWS and Google for a more than $1 billion project to provide cloud services for its public sector and military.

In April, AWS and Google (GOOGL.O) won a tender for the four phase project known as “Nimbus”. read more

“Today, Amazon Web Services Inc, an Amazon.com company, announced it will open an infrastructure region in Israel in the first half of 2023”, AWS said in a statement on Friday.