Toggle light / dark theme

All cells on Earth are made of phospholipid membranes. Now astronomers have found the component molecules in interstellar space.


One potential explanation is that the Earth was seeded from space with the building blocks for life. The idea is that space is filled with clouds of gas and dust that contain all the organic molecules necessary for life.

Indeed, astronomers have observed these buildings blocks in interstellar gas clouds. They can see amino acids, the precursors of proteins and the machinery of life. They can also see the precursors of ribonucleotides, molecules that can store information in the form of DNA.

But there is another crucial component for life – molecules that can form membranes capable of encapsulating and protecting the molecules of life in compartments called protocells. On Earth, the membranes of all cells are made of molecules called phospholipids. But these have never been observed in space. Until now.

O,.o! Woah


When heavy ions, accelerated to the speed of light, collide with each other in the depths of European or American accelerators, quark-gluon plasma is formed for fractions of a second, or even its “cocktail” seasoned with other particles. According to scientists from the IFJ PAN, experimental data show that there are underestimated actors on the scene: photons. Their collisions lead to the emission of seemingly excess particles, the presence of which could not be explained.

Quark-gluon plasma is undoubtedly the most exotic state of matter thus far known to us. In the LHC at CERN near Geneva, it is formed during central collisions of two lead ions approaching each other from opposite directions, traveling at velocities very close to that of light. This quark-gluon soup is also sometimes seasoned with other particles. Unfortunately, the theoretical description of the course of events involving plasma and a cocktail of other sources fails to describe the data collected in the experiments.

In an article published in Physics Letters B, a group of scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow explained the reason for the observed discrepancies. Data collected during collisions of lead nuclei in the LHC, as well as during collisions of gold nuclei in the RHIC at Brookhaven National Laboratory near New York, begin to agree with the theory when the description of the processes takes into account collisions between photons surrounding both interacting ions.

Microsoft keeps hinting at a new version of Windows.


Microsoft has been teasing a “next generation” of Windows for months now, but new hints suggest the company isn’t just preparing an update to its existing Windows 10 software, but a new, numbered version of the operating system: Windows 11.

The software giant announced a new Windows event for June 24th yesterday, promising to show “what’s next for Windows.” The event invite included an image of what looks like a new Windows logo, with light shining through the window in only two vertical bars, creating an outline that looks very much like the number 11. Microsoft followed up with an animated version of this image, making it clear the company intentionally ignored the horizontal bars.

Smashing together lead particles at 99.9999991 percent the speed of light, scientists have recreated the first matter that appeared after the Big Bang.

Out of the wreck came a primordial type of matter known as quark-gluon plasma, or QGP. It only lasted a fraction of a second, but for the first time, scientists were able to probe the plasma’s liquid-like characteristics – finding it to have less resistance to flow than any other known substance – and determine how it evolved in the first moments in the early Universe.

Circa 2017


Scientists in the Netherlands say they are close to a breakthrough which will allow crops to be grown in deserts. Many say this could completely alter life on the African continent and even end hunger.

World leaders meeting at the climate talks in Germany are being urged to commit to more funding for new agricultural projects in drought-stricken parts of the world.

In our series, Real Food, we take a look at the growing trend of vertical farming. Companies like Aerofarms are rethinking how we grow vegetables by going up to provided fresh and affordable produce. Michelle Miller reports.

Watch “CBS This Morning” HERE: http://bit.ly/1T88yAR
Watch the latest installment of “Note to Self,” only on “CBS This Morning,” HERE: http://cbsn.ws/1Sh8XlB
Follow “CBS This Morning” on Instagram HERE: http://bit.ly/1Q7NGnY
Like “CBS This Morning” on Facebook HERE: http://on.fb.me/1LhtdvI
Follow “CBS This Morning” on Twitter HERE: http://bit.ly/1Xj5W3p.
Follow “CBS This Morning” on Google+ HERE: http://bit.ly/1SIM4I8

Get the latest news and best in original reporting from CBS News delivered to your inbox. Subscribe to newsletters HERE: http://cbsn.ws/1RqHw7T

Get your news on the go! Download CBS News mobile apps HERE: http://cbsn.ws/1Xb1WC8

Many of the fundamental features of life don’t necessarily have to be the way they are. Chance plays a major role in evolution, and there are always alternate paths that were never explored, simply because whatever evolved previously happened to be good enough. One instance of this idea is the genetic code, which converts the information carried by our DNA into the specific sequence of amino acids that form proteins. There are scores of potential amino acids, many of which can form spontaneously, but most life uses a genetic code that relies on just 20 of them.

Over the past couple of decades, scientists have shown that it doesn’t have to be that way. If you supply bacteria with the right enzyme and an alternative amino acid, they can use it. But bacteria won’t use the enzyme and amino acid very efficiently, as all the existing genetic code slots are already in use.

In a new work, researchers have managed to edit bacteria’s genetic code to free up a few new slots. They then filled those slots with unnatural amino acids, allowing the bacteria to produce proteins that would never be found in nature. One side effect of the reprogramming? No viruses could replicate in the modified bacteria.

Radiation therapy was first used to treat cancer more than 100 years ago. About half of all cancer patients still receive it at some point during their treatment. And until recently, most radiation therapy was given much as it was 100 years ago, by delivering beams of radiation from outside the body to kill tumors inside the body.

Though effective, external radiation can also cause collateral damage. Even with modern radiation therapy equipment, “you have to [hit] normal tissue to get to a tumor,” said Charles Kunos, M.D., Ph.D., of NCI’s Cancer Therapy Evaluation Program (CTEP). The resulting side effects of radiation therapy depend on the area of the body treated but can include loss of taste, skin changes, hair loss, diarrhea, and sexual problems.

Now, researchers are developing a new class of drugs called radiopharmaceuticals, which deliver radiation therapy directly and specifically to cancer cells. The last several years have seen an explosion of research and clinical trials testing new