Toggle light / dark theme

Last month, self-driving technology company TuSimple shipped a truckload of watermelons across the state of Texas ten hours faster than normal. They did this by using their automated driving system for over 900 miles of the journey. The test drive was considered a success, and marked the beginning of a partnership between TuSimple and produce distributor Guimarra. This is one of the first such partnerships announced, but TuSimple may soon have some competition from another big player in the driverless vehicles game: Alphabet Inc. subsidiary Waymo.

Yesterday, Waymo announced a partnership with transportation logistics company JB Hunt to move cargo in automated trucks in Texas. The first route they’ll drive is between Houston and Fort Worth, which Waymo claims is “one of the most highly utilized freight corridors in the country.”

At around 260 miles long, much of the route is a straight shot on Interstate 45. The trucks will have human safety drivers on board who will likely take over some of the city driving portions, but the goal is to use the automated system as much as possible. A software technician will be on board as well, which makes sense given software will be doing the bulk of the driving.

Life on Mars may be freeze-dried.


But there’s a solution: freeze-dry it.

In a first-of-its-kind experiment, a team of Japanese researchers freeze-dried samples of mice sperm and sent them aboard the ISS to see how well this crucial element of human life (and, well, a lot of life on Earth) will fair against the harsh radiation of space.

Even after six long years aboard the ISS, the team found that the mice’s space sperm sired equally healthy pups as its terrestrial control. An additional X-ray experiment predicts that this positive outcome could persist with up to 200 years of space radiation exposure.

He’s got a point. There’s a lot more space in the sky than on the ground, obviously, but flight paths need to be carefully planned and contained within specific areas, particularly in and near big cities. If flying taxis became affordable enough for people to use them the way we use Uber and Lyft today, there would quickly be all sorts of issues with traffic and congestion, both in the sky and with takeoff and landing space on the ground. So why not take a scaled approach from the beginning?

Speaking of affordability, Kelekona says that’s a priority, too. It may play out differently, especially in the technology’s early stages, but the intention is for tickets on the drone bus to cost the same as a train ticket for an equivalent distance. The first route, from Manhattan to the Hamptons, will reportedly have a 30-minute flight time and an $85 ticket price.

Other intended routes include Los Angeles to San Francisco, New York City to Washington DC, and London to Paris—all in an hour, which is comparable to the time it takes for a regular flight right now. One of the differences, ideally, will be that the eVTOLs will be able to land and take off closer to city centers, given that they won’t require long runways.

While DNA provides the genetic recipe book for biological form and function, it is the job of the body’s proteins to carry out the complex commands dictated by DNA’s genetic code.

Stuart Lindsay, a researcher at the Biodesign Institute at ASU, has been at the forefront of efforts to improve rapid DNA sequencing and has more recently applied his talents to explore the much thornier problem of sequencing molecules, one molecule at a time.

In a new overview article, Lindsay’s efforts are described along with those of international colleagues, who are applying a variety of innovative strategies for protein sequencing at the single-cell, and even single-molecule level.

The aircraft could be used to transfer passengers between home and airports, Virgin believes. It would be able, for example, to make the 56-mile journey from Cambridge to Heathrow in 22 minutes, compared with a 90-minute drive.

The announcement represents another step in the race to making mass electric flight and air taxis a reality. Some analysts have predicted the sector could be worth £150bn by 2040 but significant hurdles remain, including regulation and safety certification. The VA-X4 has yet to take its first test flight. Dómhnal Slattery, the chief executive of Avolon, said its order would “accelerate the inevitable commercial rollout of zero-emissions aircraft. Before the end of this decade, we expect zero-emission urban air mobility, enabled by eVTOLs, to play an increasingly important role in the global commercial aviation market.”

TAMPA, Fla. — Seraphim Capital plans to trade stakes it has amassed in space technology startups on the public market through an investment trust.

The Seraphim Space Investment Trust will eventually comprise bets in 19 international startups, including satellite data specialist Spire Global, quantum encryption firm Arqit and space-based cellular network operator AST Space Mobile.

Those three recently got valuations of more than $1 billion in mergers with special purpose acquisition companies (SPACs), investment vehicles that offer another route to public markets.

Floorplanning is the process by which an integrated circuit is designed using a top-down view. Rather like the architectural plan of a home, garden, and walkways, each of the major functional blocks is placed in a schematic representation that provides a guide for where everything needs to be. This layout can include transistors, capacitors, resistors, wires and other components, all packed into extremely tiny spaces.

Determining the optimal configuration for processing speed and power efficiency is a detailed and lengthy task, involving many iterations. It can often take weeks or even months for expert human engineers. Attempts to fully automate the process have been unsuccessful.

However, researchers from Google have this week reported a new machine-learning approach to floorplanning. Not only does it reduce the design workload to a matter of hours, it also results in chips with superior designs.

Cells contain machinery that duplicates DNA into a new set that goes into a newly formed cell. That same class of machines, called polymerases, also build RNA messages, which are like notes copied from the central DNA repository of recipes, so they can be read more efficiently into proteins. But polymerases were thought to only work in one direction DNA into DNA or RNA. This prevents RNA messages from being rewritten back into the master recipe book of genomic DNA. Now, Thomas Jefferson University researchers provide the first evidence that RNA segments can be written back into DNA, which potentially challenges the central dogma in biology and could have wide implications affecting many fields of biology.

“This work opens the door to many other studies that will help us understand the significance of having a mechanism for converting RNA messages into DNA in our own cells,” says Richard Pomerantz, Ph.D., associate professor of biochemistry and molecular biology at Thomas Jefferson University. “The reality that a human can do this with high efficiency, raises many questions.” For example, this finding suggests that RNA messages can be used as templates for repairing or re-writing genomic DNA.

The work was published June 11th in the journal Science Advances.