Toggle light / dark theme

Researchers at Oxford University have developed an AI-enabled system that can comprehensively identify people in videos by conducting detective-like, multi-domain investigations as to who they might be, from context, and from a variety of publicly available secondary sources, including the matching of audio sources with visual material from the internet.

Though the research centers on the identification of public figures, such as people appearing in television programs and films, the principle of inferring identity from context is theoretically applicable to anyone whose face, voice, or name appears in online sources.

Indeed, the paper’s own definition of fame is not limited to show business workers, with the researchers declaring ‘We denote people with many images of themselves online as famous‘.

WASHINGTON—The Biden administration launched an initiative Thursday aiming to make more government data available to artificial intelligence researchers, part of a broader push to keep the U.S. on the cutting edge of the crucial new technology.

The National Artificial Intelligence Research Resource Task Force, a group of 12 members from academia, government, and industry led by officials from the White House Office of Science and Technology Policy and the National Science Foundation, will draft a strategy for creating an AI research resource that could, in part, give researchers secure access to stores of anonymous data about Americans, from demographics to health and driving habits.

They would also look to make available computing power to analyze the data, with the goal of allowing access to researchers across the country.

(Bloomberg) — On a Wednesday afternoon in May, an Uber driver in San Francisco was about to run out of charge on his Nissan Leaf. Normally this would mean finding a place to plug in and wait for a half hour, at least. But this Leaf was different.

Instead of plugging in, the driver pulled into a swapping station near Mission Bay, where a set of robot arms lifted the car off of the ground, unloaded the depleted batteries and replaced them with a fully charged set. Twelve minutes later the Leaf pulled away with 32 kilowatt hours of energy, enough to drive about 130 miles, for a cost of $13.

A swap like this is a rare event in the U.S. The Leaf’s replaceable battery is made by Ample, one of the only companies offering a service that’s more popular in markets in Asia. In March, Ample announced that it had deployed five stations around the Bay Area. Nearly 100 Uber drivers are using them, the company says, making an average of 1.3 swaps per day. Ample’s operation is tiny compared to the 100000 public EV chargers in the U.S.—not to mention the 150000 gas stations running more than a million nozzles. Yet Ample’s founders Khaled Hassounah and John de Souza are convinced that it’s only a matter of time before the U.S. discovers that swapping is a necessary part of the transition to electric vehicles.

COVID 19 pandemic, automation and 6G could end the metropolitan era from building high sky scrapers for companies. Companies can operate like a network from home to home without going to office. This will help a lot to bring down Urban Heat Islands and make our cities more efficient in transportation and communication to send the data even faster.

Tom Marzetta is the director of NYU Wireless, New York University’s research center for cutting-edge wireless technologies. Prior to joining NYU Wireless, Marzetta was at Nokia Bell Labs, where he developed massive MIMO. Massive MIMO (short for “multiple-input multiple-output”) allows engineers to pack dozens of small antennas into a single array. The high number of antennas means more signals can be sent and received at once, dramatically boosting a single cell tower’s efficiency.

Massive MIMO is becoming an integral part of 5G, as is an independent development that came out of NYU Wireless by the center’s founding director Ted Rappaport: Millimeter waves. And now the professors and students at NYU Wireless are already looking ahead to 6G and beyond.

Marzetta spoke with IEEE Spectrum about the work happening at NYU Wireless, as well as what we all might expect from 6G when it arrives in the next decade. The conversation below has been edited for clarity and length.

A Computer Science portal for geeks. It contains well written, well thought and well explained computer science and programming articles, quizzes and practice/competitive programming/company interview Questions.

A team of researchers from the University of Sydney, the ARC-Plant Protection Research Institute and York University, has found that workers in a species of honeybee found in South Africa reproduce by making near-perfect clones of themselves. In their paper published in Proceedings of the Royal Society B, the group describes their study of the bees and what they learned about them.

Prior research has found that some creatures reproduce through parthenogenesis, in which individuals reproduce without mating. This form of reproduction has the advantage of not wasting time and energy on mating and the gene pool remains undiluted. The downside, of course, is loss of genetic diversity, which helps species survive in changing conditions. Prior research has also shown that for most species, parthenogenesis is a less-than-perfect way to produce . This is because some tiny bit of genetic material is generally mixed wrong—these mistakes, known as recombinations, can lead to birth defects or non-productive eggs. In this new effort, the researchers have found a kind of honeybee that has developed a way to avoid recombinations.

The researchers found that South African Cape honeybee queens reproduce sexually, but the workers reproduce asexually. They then conducted a small experiment—they affixed tape to the reproductive organs of a queen, preventing males from mating with her, and then allowed both her and the worker bees in the same hive to reproduce asexually. They then tested the degree of recombination in both. They found that offspring of the queen had approximately 100 times as much recombination as the worker bees. Even more impressive, the offspring of the worker bees were found to be nearly identical clones of their parent. More testing showed that one line of worker bees in the hive had been cloning themselves for approximately 30 years—a clear sign that workers in the hive were not suffering from birth defects or an inability to produce viable offspring. It also showed that they have evolved a means for preventing recombination when they reproduce.

A team of scientists at the University of Sussex have for the first time built a modular quantum brain scanner, and used it to record a brain signal. This is the first time a brain signal has been detected using a modular quantum brain sensor anywhere in the world. It’s a major milestone for all researchers working on quantum brain imaging technology because modular sensors can be scaled up, like Lego bricks. The team have also connected two sensors like Lego bricks, proving that whole-brain scanning using this method is within reach—as detailed in their paper, which is published today in pre-print. This has not been possible with the currently commercially available quantum brain sensors from the United States.

These modular devices work like play bricks in that they can be connected together. This opens up the potential for whole– scanning using quantum technology, and potential advances for neurodegenerative diseases like Alzheimer’s.

The device, which was built at the Quantum Systems and Devices laboratory at the university, uses ultra-sensitive quantum to pick up these tiniest of magnetic fields to see inside the brain in order to map the neural activity.