Toggle light / dark theme

German researchers developed a lattice arrangement of three different layers of ferroelectric crystals that created a powerful photovoltaic effect.


Combining ultra-thin layers of different materials can raise the photovoltaic effect of solar cells by a factor of 1,000 according to researchers at Martin Luther University Halle-Wittenberg (MLU) in Germany.

Their findings, published in the journal “Science Advances,” described a lattice arrangement of three different layers of ferroelectric crystals (in this case, of barium titanate, strontium titanate, and calcium titanate) that created a powerful solar energy producing effect.

Ferroelectric means that the material has spatially separated positive and negative charges. The charge separation leads to an asymmetric structure that enables electricity to be generated from light.

Circa 2016


Scientists and engineers since the 1940s have been toying with the idea of building self-replicating machines, or von Neumann machines, named for John von Neumann. With recent advances in 3D printing (including in zero gravity) and machine learning AI, it seems like self-replicating machines are much more feasible today. In the 21st century, a tantalizing possibility for this technology has emerged: sending a space probe out to a different star system, having it mine resources to make a copy of itself, and then launching that one to yet another star system, and on and on and on.

As a wild new episode of PBS’s YouTube series Space Time suggests, if we could send a von Neumann probe to another star system—likely Alpha Centauri, the closest to us at about 4.4 light years away—then that autonomous spaceship could land on a rocky planet, asteroid, or moon and start building a factory. (Of course, it’d probably need a nuclear fusion drive, something we still need to develop.)

That factory of autonomous machines could then construct solar panels, strip mine the world for resources, extract fuels from planetary atmospheres, build smaller probes to explore the system, and eventually build a copy of the entire von Neumann spacecraft to send off to a new star system and repeat the process. It has even been suggested that such self-replicating machines could build a Dyson sphere to harness energy from a star or terraform a planet for the eventual arrival of humans.

Astronauts aboard the International Space Station are set to welcome a most unusual guest, as “the Blob” blasts off into orbit on Tuesday.

An alien on its own planet, the Blob is an unclassifiable organism – neither fish nor fowl. Nor is it plant, animal, or fungus.

As such, Physarum polycephalum – a type of slime mold – has long fascinated scientists and will now be part of a unique experiment carried out simultaneously by astronauts hundreds of kilometers above the Earth and by hundreds of thousands of French school students.

Development of the aircraft isn’t focused solely around military use; Hermeus is intent on bringing innovation to commercial flight, too. “While this partnership with the US Air Force underscores US Department of Defense interest in hypersonic aircraft, when paired with Hermeus’ partnership with NASA announced in February 2,021 it is clear that there are both commercial and defense applications for what we’re building,” said Hermeus CEO and co-founder AJ Piplica.


Hermeus’ Quarterhorse is a hypersonic aircraft that can fly at Mach 5 speeds, or 3,000 mph—fast enough to go from the US to Europe in 90 minutes.

Circa 2019


An add-on device for smartphones could replace blood glucose meters for measuring blood sugar. Blood sugar measurements are essential for diabetes patients who need to know their blood glucose concentration in order to regulate it with insulin. Failure to do so might result in complications from the disease. The device, designed by researchers in Taiwan, achieved 100% accuracy in a test with 20 blood samples from diabetes patients (J. Biomed. Opt. 10.1117/1.JBO.24.2.027002).

The researchers designed a compact device containing no electrical components that can be used in combination with a smartphone. The light from the smartphone’s display reflects onto the blood glucose test site (BGTS) inside the device, which contains a colorimetric test strip. The user adds a blood drop to the test strip, which is then assessed for a colour change using the phone’s front camera.

In this study, the blood drop was obtained from a vein, but the device is designed to work on drops extracted from the patient’s finger using a disposable lance that is then inserted into the device. The observed colour is split into its red, green and blue components. The researchers used the green component as an indicator of blood glucose concentration, as it could reliably distinguish the widest concentration range out of the three components.