Toggle light / dark theme

:Ibotenic Acid Biosynthesis in the Fly Agaric Is Initiated by Glutamate Hydroxylation.


The fly agaric, Amanita muscaria, is widely known for its content of the psychoactive metabolites ibotenic acid and muscimol. However, their biosynthetic pathway and the respective enzymes are entirely unknown. 50 years ago, the biosynthesis was hypothesized to start with 3‐hydroxyglutamate. Here, we build on this hypothesis by the identification and recombinant production of a glutamate hydroxylase from A. muscaria. The hydroxylase gene is surrounded by six further biosynthetic genes, which we link to the production of ibotenic acid and muscimol using recent genomic and transcriptomic data. Our results pinpoint the genetic basis for ibotenic acid formation and thus provide new insights into a decades‐old question concerning a centuries‐old drug.

Keywords: biosynthesis, enzyme catalysis, fly agaric, hydroxylation, ibotenic acid.

On Jan. 15, a hacker tried to poison a water treatment plant that served parts of the San Francisco Bay Area. It didn’t seem hard.

The hacker had the username and password for a former employee’s TeamViewer account, a popular program that lets users remotely control their computers, according to a private report compiled by the Northern California Regional Intelligence Center in February and seen by NBC News.

After logging in, the hacker, whose name and motive are unknown and who hasn’t been identified by law enforcement, deleted programs that the water plant used to treat drinking water.

Summary: Researchers found an increased inflammatory signal in patients with the C90rf72 subtype of ALS. The increased inflammatory biomarkers could be found in peripheral serum tests.

Source: Thomas Jefferson University.

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a neurodegenerative disease that strikes nearly 5000 people in the U.S. every year.

The inside of a mitochondria is made up of a folded membrane, which has evolved to produce the greatest surface area possible between two parts of the mitochondria known as the intermembrane space (the outer part) and the mitochondrial matrix (the inner part). To drastically oversimplify this entire process, the mitochondria uses glucose (and ethanol if it’s available) to pump hydrogen ions (with the occasional deuterium and tritium ion) across the membrane which separates these two compartments of the mitochondria (known as the cristae) into the intermembrane space. These hydrogen ions then flow back into the mitochondrial matrix through a very special protein called ATP synthase, which uses the electrostatic potential energy of the hydrogen ion to manufacture ATP.

Unfortunately, as we get older this inner membrane starts to decay and become smaller. As the cristae starts to shrink, there is less space for ATP synthase, which means there is less ATP produced, which ultimately means that our cells do not have enough energy to maintain all of our cellular functions. As you can imagine, this lack of energy is catastrophic for the health of the cell, and will eventually lead to either cell senescent (where the cell essentially becomes dormant), or complete cell death.

Numerous different suggestions have been put forward as to explain why exactly why mitochondria decay in this way, including mutations within the DNA of the mitochondria (they have their own chromosomes), as well as the build up of oxidative agents within the cell itself which cause direct damage to the mitochondria. However, a group of scientists lead by Dr Hazel Szeto have discovered that the decay of the mitochondrial cristae is linked to declining levels of a phospholipid (fat) called cardiolipin. It turns out that as we age, oxidative agents within our body destroy this phospholipid, which is essential for maintaining the folded inner membrane of the mitochondria.