Toggle light / dark theme

Scientists have given the all-clear.


Warp drive is having a moment. Just last week, scientists dropped a bombshell when they unveiled the first physical model for a warp drive, the holy grail of space travel that would allow us to bend the fabric of space and time to their will and overcome the vast distances separating humans from the stars. Now, another astrophysicist has delivered an equally exciting warp drive breakthrough.

Up until this point, scientists have slowly chipped away at the fantasy of faster-than-light (FTL) travel by relying on theories of bizarre physics and exotic matter. But in a new paper, Göttingen University’s Erik Lentz has created a theoretical design of a warp drive that’s actually grounded in conventional physics. Lentz’s theory overcomes the need for a source of exotic matter in previous designs by reimagining the shape of warped space.

To put this into context, we’ll catch you up to (warp) speed. The colloquial term “warp drive” comes from science fiction, most famously Star Trek. The Federation’s FTL warp drive works by colliding matter and antimatter and converting the explosive energy to propulsion. Star Trek suggests this extraordinary power alone pushes the ship at FTL speeds.

Two teams of researchers took part in the dramatic discovery, published in the prestigious Science journal: an anthropology team from Tel Aviv University headed by Prof. Israel Hershkovitz, Dr. Hila May and Dr. Rachel Sarig from the Sackler Faculty of Medicine and the Dan David Center for Human Evolution and Biohistory Research and the Shmunis Family Anthropology Institute, situated in the Steinhardt Museum at Tel Aviv University; and an archaeological team headed by Dr. Yossi Zaidner from the Institute of Archaeology at the Hebrew University of Jerusalem.

Timeline: The Nesher Ramla Homo type was an ancestor of both the Neanderthals in Europe and the archaic Homo populations of Asia.

Prof. Israel Hershkovitz: “The discovery of a new type of Homo” is of great scientific importance. It enables us to make new sense of previously found human fossils, add another piece to the puzzle of human evolution, and understand the migrations of humans in the old world. Even though they lived so long ago, in the late middle Pleistocene (474000−130000 years ago), the Nesher Ramla people can tell us a fascinating tale, revealing a great deal about their descendants’ evolution and way of life.”

Free-space optical communication, the communication between two devices at a distance using light to carry information, is a highly promising system for achieving high-speed communication. This system of communication is known to be immune to electromagnetic interference (EMI), a disturbance generated by external sources that affects electrical circuits and can disrupt radio signals.

While some studies have highlighted the possible advantages of free-space optical communication, this system of communication has so far come with certain limitations. Most notably, it is known to offer limited security against eavesdroppers. Researchers at Télécom Paris (member of Institut Polytechnique de Paris), mirSense, Technische Universität Darmstadt and University of California Los Angeles (UCLA) have recently introduced a unique system for more secure free-space optical communication based on a technology known as , a specific type of semiconductor that typically emits mid–.

“The core idea behind our research is that private free-space communication with quantum key distribution (i.e., based on quantum physics properties) is promising, but it is probably years away, or even further,” Olivier Spitz, one of the researchers who carried out the study, told TechXplore. “Currently, the main limitations of this technology are the requirements for cryogenic systems, very slow data rates and costly equipment.”

Over the past few decades, roboticists and computer scientists have developed artificial systems that replicate biological functions and human abilities in increasingly realistic ways. This includes artificial intelligence systems, as well as sensors that can capture various types of sensory data.

When trying to understand properties of objects and how to grasp them or handle them, humans often rely on their sense of touch. Artificial sensing systems that replicate human touch can thus be of great value, as they could enable the development of better performing and more responsive robots or prosthetic limbs.

Researchers at Sungkyunkwan University and Hanyang University in South Korea have recently created an artificial tactile sensing system that mimics the way in which humans recognize objects in their surroundings via their sense of touch. This system, presented in a paper published in Nature Electronics, uses to capture data associated with the tactile properties of objects.

Microsoft, via its Security Intelligence account on Twitter, has issued a warning to Windows users of a new type of phishing scam that involves emails requesting users to dial a call center. They warn users to not dial the call center because following the instructions given by a human operator can lead to malware infections. The malware scam only works with Windows computers that have Microsoft Excel.

The new threat involves BazarLoader, a type of malware that allows backdoor access to infected computers. BazarLoader works by allowing to sneak in through a hidden backdoor on a user’s computer, which allows them to install viruses or other types of malware. Over the past several years, criminals have used different methods to trick users into carrying out instructions that allow BazarLoader to infect their computer. In this new campaign, Microsoft reports that such criminals are using an email/ approach.

The new approach involves an email sent to . The email claims that a trial subscription is about to expire and that the user’s credit card is going to be used to automatically charge them unless they dial a specified number. If a user falls for the message and calls the center, a human being answers and claims that all they need to do is download a certain Excel spreadsheet.

Without GPS, autonomous systems get lost easily. Now a new algorithm developed at Caltech allows autonomous systems to recognize where they are simply by looking at the terrain around them—and for the first time, the technology works regardless of seasonal changes to that terrain.

Details about the process were published on June 23 in the journal Science Robotics.

The general process, known as visual terrain-relative navigation (VTRN), was first developed in the 1960s. By comparing nearby terrain to high-resolution satellite images, can locate themselves.