Toggle light / dark theme

Safe and readily available water is important for public health, whether it is used for drinking, domestic use, food production, or recreational purposes. Despite the vast quantity of water on Earth, just 2.5% of it is freshwater, and an estimated 785 million people lack a clean source of drinking water. Desalination of seawater could be a vital technology to meet the world’s drinking water needs.

Now, Korean engineers have developed a new desalination technique that takes just minutes to make seawater drinkable. They used a new nanofiber membrane distillation process that could desalinate water with 99.99% efficiency. Engineers believe that commercializing such technology could help humankind cope with the shortage of fresh drinking water in the future.

Amongst the most challenging issues in membrane distillation is membrane wetting that causes the pollution of permeate, reduction in vapor production, and finally, reduction in the performance of the membrane. If a membrane exhibits wetting during membrane distillation operation, the membrane must be replaced.

The Retrobiome, Cancer, And Aging — Roswell Park Comprehensive Cancer CtrThe Retrobiome, Cancer, And Aging — Dr. Andrei Gudkov, PhD, DSci, Roswell Park Comprehensive Cancer Center, joins me on Progress, Potential, And Possibilities Cornell University College of Veterinary Medicine #Cancer #Vaika #Genome #DnaDamage #ImmunoSenescence #Pets #Dogs #Health #Lifespan #LifeExtension #Inflammaging #Longevity #Aging #Oncology


Dr Andrei Gudkov, PhD, DSci, is a preeminent cancer researcher who serves as Senior Vice President, Research Technology and Innovation, Chair of the Department of Cell Stress Biology, and a member of the senior leadership team for National Cancer Institute (NCI) Cancer Center Support Grant at Roswell Park Comprehensive Cancer Center (https://www.roswellpark.org/andrei-gudkov).

Dr. Gudkov is responsible for building on the basic and translational research strengths of the Cell Stress Biology program in DNA damage and repair, photodynamic therapy, thermal and hypoxic stress and immune modulation.

The researchers hypothesized that due to abnormal excitement of the Meynert basal ganglia, SB enters the brain and activates anticholinergic action to suppress abnormal acetylcholine secretion of acetylcholine-memory-related circuits centered on the Meynert basal ganglia, eliminating the flashbacks.


Fortunately, a group of Japanese researchers from the Sogo PTSD Institute, Medical Corporation Sogokai, Japan led by Dr. Masanobu Sogo appear to have made a breakthrough in PTSD treatment.

They have identified a drug called trihexyphenidyl, that can significantly reduce the flashbacks and nightmares experienced by patients with PTSD, according to a study published in Brain and Behavior.

Trihexyphenidyl is a central anticholinergic drug used to manage disorders like parkinsonism, and alleviate several side-effects induced by drugs acting on the central nervous system (CNS). It acts by blocking the activity of a neurotransmitter, acetylcholine, in the CNS. Interestingly, it has been available for therapeutic use for around 66 years.