Orbital angular momentum monopoles have been the subject of great theoretical interest as they offer major practical advantages for the emerging field of orbitronics, a potential energy-efficient alternative to traditional electronics. Now, through a combination of robust theory and experiments at the Swiss Light Source SLS at Paul Scherrer Institute PSI, their existence has been demonstrated. The discovery is published in the journal Nature Physics.
Security protocol leverages quantum mechanics to shield data from attackers during cloud-based computation
Posted in finance, health, quantum physics, robotics/AI, security | Leave a Comment on Security protocol leverages quantum mechanics to shield data from attackers during cloud-based computation
Deep-learning models are being used in many fields, from health care diagnostics to financial forecasting. However, these models are so computationally intensive that they require the use of powerful cloud-based servers.
A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient.
A new study has mapped out the gravitational basins of attraction in the local universe, offering fresh insights into the large-scale cosmic structures that shape the movement of galaxies. The study has been published in Nature Astronomy.
An international team of astronomers reports the discovery of a new extrasolar world orbiting a nearby star known as HD 86728. This is the first exoplanet detection made as part of the NEID Earth Twin Survey (NETS). The finding was detailed in a research paper published September 18 on the pre-print server arXiv.
Solar wind is a never-ending stream of charged particles coming from the sun. Rather than a constant breeze, this wind is rather gusty. As solar wind particles travel through space, they interact with the sun’s variable magnetic field, creating chaotic and fluctuating motion known as turbulence.
Combining two techniques, analytical chemists at the Department of Energy’s Oak Ridge National Laboratory have become the first to detect fluorine and different isotopes of uranium in a single particle at the same time. Because fluorine is essential for converting uranium into a form suitable for enrichment, spotting both elements together may help inspectors of the International Atomic Energy Agency, or IAEA, determine the intended use of a nuclear material.
Up to 4,000 people with sickle cell disease in England could benefit from the drug Voxelotor if recommended by their clinician, which will offer an additional treatment option from today, following its approval by the National Institute for Health and Care Excellence (NICE).
Voxelotor (Oxbryta®)…
We’ve put some small files called cookies on your device to make our site work.
We’d also like to use analytics cookies. These send information about how our site is used to a service called Google Analytics. We use this information to improve our site.
In May 2024, a geomagnetic storm hit Earth, sending auroras across the planet’s skies in a once-in-a-generation light display. These dazzling sights are possible because of the interaction of coronal mass ejections – explosions of plasma and magnetic field from the Sun – with Earth’s magnetic field, which protects us from the radiation the Sun spits out during turbulent storms.
But what might happen to humans beyond the safety of Earth’s protection? This question is essential as NASA plans to send humans to the Moon and on to Mars. During the May storm, the small spacecraft BioSentinel was collecting data to learn more about the impacts of radiation in deep space.
“We wanted to take advantage of the unique stage of the solar cycle we’re in – the solar maximum, when the Sun is at its most active – so that we can continue to monitor the space radiation environment,” said Sergio Santa Maria, principal investigator for BioSentinel’s spaceflight mission at NASA’s Ames Research Center in California’s Silicon Valley. “These data are relevant not just to the heliophysics community but also to understand the radiation environment for future crewed missions into deep space.”