Toggle light / dark theme

Extinct volcanoes are hard to study – we never see them erupt. Using a unique experimental technique, we were able to recreate a certain type of extinct volcano in a lab, learning more about the magma these volcanoes produce.

We found that some rare magma types are surprisingly efficient at concentrating rare earth elements. This is a group of metals with crucial applications in several high-tech industries, such as magnets for electric vehicles and wind turbines.

Demand for rare earths is soaring as society moves away from fossil fuels and electrifies energy production and transport. Despite the name, rare earths aren’t particularly rare. The biggest challenge is finding rocks in which these metals are concentrated enough to be economically viable to extract.

An epidemiologist makes the case that a rush of research to stop a swine flu outbreak led to an accidental lab release of an extinct virus. Preparing for one pandemic triggered a different one.

CHICAGO — Surgeons at Northwestern Medicine successfully completed a double-lung transplant on a Minnesota woman who was battling cancer. In 2017, at just 34 years old, Amanda “Mandy” Wilk initially suspected she had food poisoning. However, her lingering symptoms prompted further investigation, ultimately leading to her diagnosis of stage 4 colorectal cancer.

OpenAI pitched the White House on building data centers in the US as large as 5GW capacity — for ref, that’s enough to power 3 mil homes.

OAI’s analysis says it could add tens of thousands of jobs, boost GDP, and keep US ahead of China on AI.

Altman has spent much of this year trying to form a…

Hi folks, I’d like to invite you to a webinar I will be giving on my research, hosted by the Foresight Institute! It takes place this Friday at 12:00pm CST. You can sign up on the linked page. The donation is optional, so if you don’t want to donate, you can just put $0.00. I hope to see you there!


Biotech and Health Extension sponsored by 100 Plus Capital

Viruses inside vaults: a powerful new gene therapy delivery system

Bio: Logan Thrasher Collins is a synthetic biologist, author, and futurist. He is currently a PhD candidate in biomedical engineering at Washington University in St. Louis. Logan began engaging in scientific research during his sophomore year of high school when he created a new synthetic biology approach for combatting antibiotic resistant infections. Since then, he has led research projects on developing x-ray microscopy techniques for connectomics, using molecular dynamics simulations to study SARS-CoV-2, and inventing novel gene therapy delivery systems. Logan has spoken at TEDxMileHigh and has published peer-reviewed scientific papers on his research. He has also published science fiction and sci-fi poetry and as well as a peer-reviewed philosophy journal article. Logan passionately advocates for applying interdisciplinary solutions to global challenges and leverages both the arts and sciences to help build a bright future.