Toggle light / dark theme

Active electronics — components that can control electrical signals — usually contain semiconductor devices that receive, store, and process information.


Researchers produced 3D-printed, semiconductor-free logic gates, which perform computations in active electronic devices. As they don’t require semiconductor materials, they represent a step toward 3D printing an entire active electronic device.

Lignin, a…


Trees are the most abundant natural resource living on Earth’s land masses, and North Carolina State University scientists and engineers are making headway in finding ways to use them as sustainable, environmentally benign alternatives to producing industrial chemicals from petroleum.

Lignin, a polymer that makes trees rigid and resistant to degradation, has proven problematic. Now those NC State researchers know why: They’ve identified the specific molecular property of lignin — its methoxy content — that determines just how hard, or easy, it would be to use microbial fermentation to turn trees and other plants into industrial chemicals.

The findings put us a step closer to making industrial chemicals from trees as an economically and environmentally sustainable alternative to chemicals derived from petroleum, said Robert Kelly, the corresponding author of a paper in the journal Science Advances detailing the discovery.

Amazon is using a new, proprietary AI solution called Vision-Assisted Package Retrieval (VAPR) to reduce the time and effort it takes for delivery drivers to locate packages in their vans. Is it a game-changer, or more AI VAPR-ware?

Somewhat lost in the hype surrounding the Tesla “We, Robot” event on 10/10 was an AI press release from Amazon that promises to improve the lives of the people who use it today, rather than two years from now.

VAPR makes Amazon delivery drivers’ lives easier by automatically identifying the packages to be delivered at a given stop. The system then project a green “O” on all packages that will be delivered at that stop, and a red “X” on all other packages. When the driver picks up all the “correct” packages, VAPR delivers an audible cue to help ensure no packages get left behind.

With liquid biopsies, detecting cancer and tracking treatment progress can be as easy as taking a blood test. This is an increasingly popular way of monitoring cancer, because it’s much less invasive than solid tumour biopsies. And liquid biopsies can become even more sensitive if they capture methylation information as well as genetic data.

Usually, liquid biopsies for cancer rely on the detection of small amounts of DNA that are shed from a tumour into the bloodstream. But especially in the disease’s early stages, circulating tumour DNA (ctDNA) levels are very low and point mutations linked to cancer can be easy to miss.

“If we want to develop assays to detect cancer earlier, we need very sensitive detection of these rare tumour fragments,” says Charlotte Proudhon, group leader at the Research Institute for Environmental and Occupational Health in Rennes, France, whose team are among those now developing liquid biopsy methods that include epigenetic markers, such as methylation.

A new University of Maryland-led discovery could spur the development of new and improved treatments for Hutchinson-Gilford progeria syndrome (HGPS), often simply called “progeria”—a rare genetic disorder with no known cure that causes accelerated aging in children.

Publishing in the journal Aging…


Researchers identify protein that could improve cardiovascular health of those with progeria.

AI and politics 😳 Artificial though it may be, the concept of “intelligence” doesn’t seem to jibe with a computer-generated image of uniformed cats toting assault rifles.

Yet that visual slur, which supports a debunked story about immigrants in Ohio eating pets, has become a signature image from…


UMD experts explain the emotional pulls and cognitive pitfalls—and how to avoid them.

In a world powered by artificial intelligence applications, data is king, but it’s also the crown’s biggest burden.


As described in the article, quantum memory stores data in ways that classical memory systems cannot match. In quantum systems, information is stored in quantum states, using the principles of superposition and entanglement to represent data more efficiently. This ability allows quantum systems to process and store vastly more information, potentially impacting data-heavy industries like AI.

In a 2021 study from the California Institute of Technology, researchers showed that quantum memory could dramatically reduce the number of steps needed to model complex systems. Their method proved that quantum algorithms using memory could require exponentially fewer steps, cutting down on both time and energy. However, this early work required vast amounts of quantum memory—an obstacle that could have limited its practical application.

Now, two independent teams have derived additional insights, demonstrating how these exponential advantages can be achieved with much less quantum memory. Sitan Chen from Harvard University, along with his team, found that just two quantum copies of a system were enough to provide the same computational efficiency previously thought to require many more.