Toggle light / dark theme

The U.S. Air Force is looking to field a new type of low-cost yet advanced drone to be used as an “Off-Board Sensing Station,” or OBSS. Details remain very limited, and the few publicly available Air Force Research Laboratory documents on the program state that specifics are only available to approved contractors. Still, according to Kratos, one of the companies involved with the effort, the new unmanned platform could potentially end up being as revolutionary as the firm’s stealthy XQ-58 Valkyrie has been.

The remarks about the OBSS program were made by Eric DeMarco, President and Chief Executive Officer of Kratos Defense & Security Solutions, during a company earnings call this week. DeMarco says that if the program is successful, the company believes it “could ultimately be as significant and transformational to Kratos as we expect Valkyrie to be.” The CEO added that the OBSS program is a signal that “the total addressable market opportunity for Kratos’ class of tactical drones is rapidly expanding and clarifying, as the Department of Defense strives for affordable force multiplier systems and technologies.”

Deployment of functional circuits on a 3D freeform surface is of significant interest to wearable devices on curvilinear skin/tissue surfaces or smart Internet-of-Things with sensors on 3D objects. Here we present a new fabrication strategy that can directly print functional circuits either transient or long-lasting onto freeform surfaces by intense pulsed light-induced mass transfer of zinc nanoparticles (Zn NPs). The intense pulsed light can locally raise the temperature of Zn NPs to cause evaporation. Lamination of a kirigami-patterned soft semi-transparent polymer film with Zn NPs conforming to a 3D surface results in condensation of Zn NPs to form conductive yet degradable Zn patterns onto a 3D freeform surface for constructing transient electronics. Immersing the Zn patterns into a copper sulfate or silver nitrate solution can further convert the transient device to a long-lasting device with copper or silver. Functional circuits with integrated sensors and a wireless communication component on 3D glass beakers and seashells with complex surface geometries demonstrate the viability of this manufacturing strategy.

Skydweller Aero’s latest flight test of a modified solar-powered aircraft will provide the real-world data necessary for the U.S.-Spanish startup’s engineers to start developing and testing their proprietary autonomous flight software.

Established in 2019 following the acquisition of Swiss nonprofit Solar Impulse’s Solar Impulse 2 aircraft—which circumnavigated the globe in 2016 — Skydweller is headquartered in Oklahoma, with offices in the Washington D.C. region and a flight test facility in Albacete, Spain, roughly two hours south of their engineering operations in Madrid. During the two-and-a-half-hour optionally-piloted flight demonstration in Albacete, Skydweller’s engineering team completed initial validation of their new flight hardware and autopilot’s ability to initiate and manage the aircraft control, actuation, and sensor technology systems.

A pilot was in the cockpit of the Solar Impulse 2, working in tandem with another operator who controlled the movements of the aircraft remotely from the ground.

The Israeli inventor of a “precision medicine” for COVID-19 is “very optimistic,” after an 88-person hospital trial entered its final day without a single patient ending up on a ventilator.


Placebo study still to come, but inventor says medication ‘could be a game changer’ after around 9 out of 10 participants in Greek trial are released from hospital within 5 days.

Electric tractor developer Solectrac has announced that its e70N tractor is now available for sale. Solectrac recently delivered the 70-horsepower, diesel-equivalent tractors to three farms in Northern California as part of a grant from the Bay Area Air Quality Management District’s Funding Agriculture Replacement Measures for Emission Reductions Demonstration Program (FARMER).

Solectrac is an electric tractor developer founded in Northern California with the goal of offering farmers independence from the pollution, infrastructure, and price volatility associated with fossil fuels.

Electrek first reported on Solectrac after it donated a Compact Electric Tractor (CET) to Jack Johnson’s nonprofit organization in Oahu, Hawaii.

But 2-AG is almost immediately converted to arachidonic acid, a building block for inflammatory compounds called prostaglandins. The researchers showed that the ensuing increase in arachidonic acid levels resulted in the buildup of a particular variety of prostaglandin that causes constriction of tiny blood vessels in the brain where the seizure has induced thatprostaglandin’s production, cutting off oxygen supply to those brain areas.


Summary: The release of 2-AG, a natural endocannabinoid that is suggested to be the brain’s equivalent to THC, dampens down seizure activity but increases post-seizure oxygen deprivation in the brain.

Source: Stanford

A marijuana-like chemical in the brain, mirroring its plant-based counterpart, packs both ups and downs.

The problem with impure RNA is that it can trigger reactions, like swelling, that can be harmful, and even life-threatening. For example, impure RNA can cause inflammation in the lungs of a patient with cystic fibrosis. Conventionally manufactured RNA has to undergo a lengthy and expensive process of purification. “Rather than having to purify RNA,” says Craig Martin, the paper’s senior author and professor of chemistry at UMass, “we’ve figured out how to make clean RNA right from the start.”


Researchers at the University of Massachusetts Amherst recently unveiled their discovery of a new process for making RNA. The resulting RNA is purer, more copious and likely to be more cost-effective than any previous process could manage. This new technique removes the largest stumbling block on the path to next-generation RNA therapeutic drugs.

If DNA is the blueprint that tells the cells in our bodies what proteins to make and for what purposes, RNA is the messenger that carries DNA’s instruction to the actual -making machinery within each cell. Most of the time this process works flawlessly, but when it doesn’t, when the body can’t make a protein it needs, as in the case of a disease like cystic fibrosis, serious illness can result.

One method for treating such protein deficiencies is with therapeutics that replace the missing proteins. But researchers have long known that it’s more effective when the body can make the protein it needs itself. This is the goal of an emerging field of medicine—RNA therapeutics. The problem is, the current methods of producing lab-made RNA can’t deliver RNA that is pure enough, in enough quantities in a way that’s cost-effective. “We need lots of RNA,” says Elvan Cavaç, lead author of the paper that was recently published in the Journal of Biological Chemistry, MBA student at UMass Amherst, and a recent Ph.D. graduate in chemistry, also from UMass. “We’ve developed a novel process for producing pure RNA, and since the process can reuse its ingredients, yielding anywhere between three and ten times more RNA than the conventional methods, it also saves time and cost.”