We’ve seen a lot of electric vehicle growth and success stories in the past several years, but one area that’s been a bit of a letdown has been the semi truck market. Unfortunately, we still don’t have the Tesla Semi, and it was recently delayed until 2,022 and a big side area of that market that “futurists” have long been excited about is potential self-driving trucks. Platoons of self-driving semi trucks are especially exciting since tight, train-like caravans of semi trucks would use far less energy than the current system, and those trucks could much more easily be cost-competitive electric trucks with zero tailpipe emissions. Anyway, though, we’re getting ahead of ourselves again.
In a new study, researchers have shown that antibiotic cycling — which involves doctors switching between antibiotics to overcome antibiotic resistance — may be an ineffective and unsustainable strategy.
New research sheds light on the potential limitations of ‘antibiotic cycling’ as a way of combatting antibiotic resistance.
Last month, Indiana’s Department of Transport (INDOT) announced a collaboration with Purdue University and German company Magment to test out whether cement with embedded magnetized particles could provide an affordable road-charging solution.
Most wireless vehicle charging technologies rely on a process known as inductive charging, where electricity pumped into a wire coil creates a magnetic field that can induce an electric current in any other nearby wire coil. The charging coils are installed at regular intervals under the road, and cars are fitted with a receiver coil that picks up the charge.
But installing thousands of miles of copper under the road is obviously fairly costly. Magment’s solution is to instead embed standard concrete with recycled ferrite particles, which are also able to generate a magnetic field but are considerably cheaper. The company claims its product can achieve transmission efficiency of up to 95 percent and can be built at “standard road-building installation costs.”
Developed with ex-NASA engineers and current space technologies, the XP-1 also offers a blistering sub-3-second sprint to 60 mph.
😀
The Speeder’s design team said the sci-fi sky-bike recently passed flight tests. They expect it to be commercially available by 2023.
After a much-anticipated GAO denial of Blue Origin and Dynetics protests over NASA’s decision to solely award SpaceX a contract to turn Starship into a crewed Moon lander, an in-depth (but heavily redacted) document explaining that decision was released on August 10th.
Aside from ruthlessly tearing both companies’ protests limb from limb, the US Government Accountability Office’s decision also offered a surprising amount of insight into SpaceX’s HLS Starship proposal. One of those details in particular seemed to strike an irrational nerve in the online spaceflight community. Specifically, in its decision, GAO happened to reveal that SpaceX had proposed a mission profile that would require as many as 16 launches to fully fuel a Starship Lander and stage the spacecraft in an unusual lunar orbit.
After around 24 hours of chaos, confusion, and misplaced panic, SpaceX CEO Elon Musk finally weighed in on the GAO document’s moderately surprising indication that each Starship Moon landing would require sixteen SpaceX launches.
There’s very few opportunities in cybersecurity where you get the benefit of foresight. This could be one.
Heat flows naturally through the TEG because its cold side is kept at room temperature, while its hot side, which is in thermal contact with the cell, is at a high temperature. The Seebeck effect, which is the direct conversion of temperature differences between two semiconductor materials into electric voltage, generates this difference which then translates into additional electrical power.
The scientists decided not to use a spectrum splitting technology, which is generally utilized in these applications, to direct different parts of the solar spectrum towards either the PV or the TEG unit. “It is more convenient, in terms of final efficiency gains, to keep the solar cell at the same temperature of the TEG hot side, instead of keeping the cell cold but losing much of the recoverable heat,” the academics explained, noting that a wide-gap solar cell based on perovskite was chosen for the device, due to its lower sensitivity to high temperatures. “Temperature-sensitive materials, such as silicon, lose too much efficiency to make the hybridization convenient,” they further explained.
Awake the Future: Episode 1
Posted in futurism