Toggle light / dark theme

“We showed that cholesterol is acting essentially as a signal in neurons that determines how much Aβ gets made—and thus it should be unsurprising that apoE, which carries the cholesterol to neurons, influences Alzheimer’s risk,” says study co-senior author Scott Hansen, PhD, an associate professor in the Department of Molecular Medicine at Scripps Research, Florida.


Summary: A new advanced imaging technique shows how cholesterol regulates the production of Alzheimer’s associated amyloid beta proteins in astrocytes.

Source: Scripps Research Institute

A team co-led by scientists at Scripps Research has used advanced imaging methods to reveal how the production of the Alzheimer’s-associated protein amyloid beta (Aβ) in the brain is tightly regulated by cholesterol.

These researchers recently published a study on VDAC2, a protein that helps regulate calcium signaling within heart cells. Blockage of the signals causes severe impairment of heart cell contraction, making it harder for the organ to push blood through the body.

Taking away this protein made heart function sharply decline in laboratory mice, eventually leading to their death, while reintroduction of VDAC2 reversed many of the effects of heart failure. An experimental drug called efsevin was able to produce similar effects in other mice with heart failure.


With the epidemic of heart failure exacerbating the pandemic of COVID-19, the discovery by University of Utah researchers in Salt Lake City of a protein in heart cells brings the potential for a method to improve heart function in patients.

Three groundbreaking ideas for the future of high-speed rail travel in Europe have been proposed by a number of companies. Hyperloop, Maglev trains and a single European railway area have been suggested as climate-friendly options to transform mobility on the continent in years to come. Spanish company Zeleros want to build a scalable hyperloop system capable of connecting cities in a matter of minutes, achieving speeds of 1,000km/h with zero emissions. Maglev trains have been suggested by Polish company Nevomo as a more imminent European rail transformation, with the aim of implementing hyperloop once the technology is ready.

60 Minutes+ correspondent Laurie Segall reports on the big money being spent in a world somewhere between digital and reality. See the story, streaming now only on Paramount+.

“60 Minutes” is the most successful television broadcast in history. Offering hard-hitting investigative reports, interviews, feature segments and profiles of people in the news, the broadcast began in 1,968 and is still a hit, over 50 seasons later, regularly making Nielsen’s Top 10.

Watch full episodes: http://cbsn.ws/1Qkjo1F
Get more “60 Minutes” from “60 Minutes: Overtime”: http://cbsn.ws/1KG3sdr.
Follow “60 Minutes” on Instagram: http://bit.ly/23Xv8Ry.
Like “60 Minutes” on Facebook: http://on.fb.me/1Xb1Dao.
Follow “60 Minutes” on Twitter: http://bit.ly/1KxUsqX

Download the CBS News app: http://cbsn.ws/1Xb1WC8

But a team of physicists is proposing a radical idea: Instead of forming black holes through the usual death-of-a-massive-start route, giant dark matter halos directly collapsed, forming the seeds of the first great black holes.

Supermassive black holes (SMBHs) appear early in the history of the universe, as little as a few hundred million years after the Big Bang. That rapid appearance poses a challenge to conventional models of SMBH birth and growth because it doesn’t look like there can be enough time for them to grow so massive so quickly.

“Physicists are puzzled why SMBHs in the early universe, which are located in the central regions of dark matter halos, grow so massively in a short time,” said Hai-Bo Yu, an associate professor of physics and astronomy at UC Riverside, who led a study of SMBH formation that appeared in Astrophysical Journal Letters.

Researchers in Singapore and at CalTech have developed a 3D printed fabric with an interesting property: it is generally flexible but can stiffen on demand. You can see a video about the new fabric, below.

The material consists of nylon octahedrons interlocked. The cloth is enclosed in a plastic envelope and vacuum-packed. Once in a vacuum, the sheet becomes much stiffer and can hold many times its own weight.

Presumably, the idea would be to allow the material to flex in the plastic envelope until there was a need for the increased rigidity, and then remove the air. Of course, there are a lot of practical problems with that. If the envelope is no longer air tight, for example, the operation will fail. It is also hard to rapidly remove the air from the bag to make, say, something like Batman’s cape which was a comparison the researchers drew.

A new study by scientists has demonstrated how researchers may be able to create an accelerating jet of antimatter from light.

A team of physicists has shown that high-intensity lasers can be used to generate colliding gamma photons – the most energetic wavelengths of light – to produce electron-positron pairs. This, they say, could help us understand the environments around some of the Universe’s most extreme objects: neutron stars.

The process of creating a matter-antimatter pair of particles – an electron and a positron – from photons is called the Breit-Wheeler process, and it’s extremely difficult to achieve experimentally.

Bionic arms used to cost $80,000. Now, a young engineer has lowered the cost by over 90%.

Subscribe here: https://freeth.ink/youtube-subscribe-toc.

Unlimited Tomorrow is pioneering a new age in prosthetics with its 3D-printed robotic arms. Founded in 2,014 by Easton LaChapelle when he was just 18 years old, the company is poised to become a leader in the prosthetic arm industry. Their True Limb device costs less than $8,000 and it’s even cheaper for children, priced at about $4,000.

True Limb is both functional and realistic-looking, serving as a mirror image of the amputee’s opposing limb, even down to the fingertips. And while the prosthetic arm is 60–90% cheaper than traditional prosthetics, many users say it’s far superior to market alternatives. What’s the secret? Unlimited Tomorrow uses a totally remote, custom process that cuts out middlemen to produce prosthetics completely in-house.