Toggle light / dark theme

A blockchain-based initiative from the United States Air Force will employ Constellation’s Hypergraph Network to provide data security with the Department of Defense’s commercial partners.

In a Thursday announcement, Constellation said it had been working with Kinnami Software Corporation to develop an end-to-end data security solution using blockchain encryption and distributed data management for the United States Transportation Command, Air Mobility Command’s 618th Air Operations Center, and a Civil Reserve Air Fleet partner. According to the platform, its goal is to securely exchange data with commercial partners on missions involving the operations of aircraft and ships under contract to the Department of Defense, or DoD.

The United States Transportation Command, or USTRANSCOM, allows authorities — including those in the 618th — to coordinate missions using available resources from both the military and private sector. Constellation Network’s solution may have the potential to improve the existing cybersecurity and general effectiveness.

Physics World


An ultra-precise quantum sensor based on trapped beryllium ions is up to 20 times better at detecting weak electric fields than previous atomic devices. By introducing entanglement between the collective motion of the ions and their electronic spin, a collaboration led by the US National Institute of Standards and Technology (NIST) demonstrated that the ion displacement sensitivity in the presence of an electric field was an order of magnitude greater than for classical protocols with trapped ions. With further improvements, the technology could even be used in the search for dark matter.

Quantum sensors can detect and measure signals that are undetectable with their classical counterparts. They are thus a promising tool in many areas of fundamental science, including biological imaging as well as physics. Of the many different systems being pursued as quantum sensors, trapped ions could be particularly favourable due to experimenters’ precise control over their parameters and their ability to introduce entanglement into the system.

The Ion Storage Group at NIST, led by John Bollinger, decided to exploit these properties for measuring very weak electric fields. “We realized our ion crystal can be incredibly sensitive to electric fields,” explains Kevin Gilmore, a former graduate research assistant at NIST and the lead author of a paper describing the research. “We found a protocol that exploits our ability to produce quantum entangled states and is very sensitive to small displacements of the ions driven by weak electric fields. It’s a neat demonstration of how quantum effects can be used to gain an advantage over classical systems.”

In the fictional links he drew between immortal vampires and bats, Dracula creator Bram Stoker may have had one thing right.

“Maybe it’s all in the blood,” says Emma Teeling, a geneticist studying the exceptional longevity of bats in the hope of discovering benefits for humans.

The University College Dublin researcher works with the charity Bretagne Vivante to study bats living in rural churches and schools in Brittany, western France.

Studying Novel Plasma Fractions For Age-Related Diseases And Systemic Rejuvenation — Dr. Harold Katcher Ph.D., Chief Scientific Officer, Yuvan Research Inc.


Dr. Harold Katcher is the Chief Scientific Officer at Yuvan Research Inc., a biotech company exploring the development of novel, young plasma fraction rejuvenation treatments in mammals.

Most recently Dr. Katcher was the Academic Director for Natural Sciences for the Asian Division of the University of Maryland Global Campus and throughout his career, Dr. Katcher has been a pioneer in the field of cancer research, and in the development of modern aspects of gene hunting and sequencing (including as one of the discoverers of the breast cancer gene BRCA1) as part of Myriad Genetics, and carries expertise in bioinformatics, chronobiology, and biotechnology.

The mRNA vaccine success story is one of the few positives to emerge from COVID-19. But these vaccines from Moderna and Pfizer/BioNTech are only the tip of the iceberg in the coming RNA medical technology revolution.

Australia, including our newly established UNSW RNA Institute, is well-placed to take a leading role in this revolution. With its eyes firmly set on making NSW a global force in the RNA industry, the NSW Government is backing a new RNA Bioscience Alliance between all the NSW Universities as well as funding a $15 million RNA production network between some of the state’s leading research organizations to bootstrap pre-clinical RNA research. UNSW’s RNA Institute is a key part of this drive, and with a $25 million investment brings together world-leading expertise to support the state and national agenda.

So beyond mRNA vaccines, what are these RNA therapeutics on the horizon? And what is the secret sauce that finally got mRNA vaccines to work after many years of trying? To understand this, let’s first tackle what RNA is and how it is used in medicine.

“These data suggest that differences in the microbiota following antibiotics in early life can reprogram the immune system long-term, with the consequences of this reprogramming emerging later in life, including effects on immunity, metabolism and even lifespan,” Prof Lynn said.


A team of researchers from SAHMRI and Flinders University has found a link between the type of microbiome that repopulates the gut following antibiotics and shortened lifespan in mice.