Sugar feeding prior to having an infected blood meal could protect a mosquito’s ability to get infected and transmit arboviruses such as Zika, dengue and chikungunya, according to a new study.
The research – led by the MRC-University of Glasgow Centre for Virus Research and published in PLOS Pathogens – showed that the Aedes aegypti species of mosquito, an arbovirus vector, had enhanced immunity in the gut after feeding on sugar, which in turn protected females of the species against viral infection.
HOUSTON — (Jan. 27 2020) — That banana peel, turned into graphene, can help facilitate a massive reduction of the environmental impact of concrete and other building materials. While you’re at it, toss in those plastic empties. A new process introduced by the Rice University lab of chemist James Tour can turn bulk quantities of just about any carbon source into valuable graphene flakes. The process is quick and cheap; Tour said the “flash graphene” technique can convert a ton of coal, food waste or plastic into graphene for a fraction of the cost used by other bulk graphene-producing methods. “This is a big deal,” Tour said. “The world throws out 30% to 40% of all food, because it goes bad, and plastic waste is of worldwide concern. We’ve already proven that any solid carbon-based matter, including mixed plastic waste and rubber tires, can be turned into graphene.” As reported in Nature, flash graphene is made in 10 milliseconds by heating carbon-containing materials to 3,000 Kelvin (about 5,000 degrees Fahrenheit). The source material can be nearly anything with carbon content. Food waste, plastic waste, petroleum coke, coal, wood clippings and biochar are prime candidates, Tour said. “With the present commercial price of graphene being $67,000 to $200,000 per ton, the prospects for this process look superb,” he said.
Scientists at Rice University are using high-energy pulses of electricity to turn any source of carbon into turbostratic graphene in an instant. The process promises environmental benefits by turning waste into valuable graphene that can then strengthen concrete and other composite materials.
Australians with COVID-19 who are at risk of hospitalisation will now have access to an additional antibody treatment, as the Therapeutic Goods Administration (TGA) announced today it has granted provisional approval for sotrovimab to be used in Australia.
Earlier this month, the Australian Government secured an initial allocation of over 7,700 doses of the novel monoclonal antibody treatment sotrovimab and a first shipment is already in the country and ready to be deployed through the National Medical Stockpile from next week.
The sotrovimab treatment requires a single dose to be administered through an intravenous (IV) infusion in a health care facility and has been shown to reduce hospitalisation or death by 79 per cent in adults with mild to moderate COVID-19, who are at risk of developing severe COVID-19.
If you are looking for details, unfortunately Mercedes is tight lipped on the AWD EQG spec sheet. You could probably expect a similar-sized battery as the EQS line at over 100kWh with a much shorter 200–300 mile range because of the increased drag of the off-roader. Today’s unveiling is mostly about eye candy and imagining an off-road Mercedes with all of the benefits of electrification.
With the Concept EQG, Mercedes-Benz presents the near-production study of an all-electric model variant of its utilitarian off-road icon. Visually, the concept car combines the unmistakably striking look of the G-Class with selected design elements typical of all-electric models from Mercedes as contrasting highlights. The 4×4 qualities of the “G”, which have always set the highest standard, will not only find their way into the age of electric mobility, but will be developed even further in some areas. The Concept EQG thus offers a promising preview of what a Mercedes-Benz G-Class with battery-electric drive will be capable of.
You’ll note in the gallery below a closed off grill similar to the EQS, 22-inch polished aluminium alloy wheels, a roof mounted lightbar reminiscent of Tesla’s Cybertruck and a distinctive look that pays homage to the G-Class lineup but really goes into a futuristic version of itself.
“If we make life multiplanetary, there may come a day when some plants & animals die out on Earth, but are still alive on Mars,” Musk tweeted in mid-April.
What Musk probably didn’t know was that his destiny was already sealed. Not in the stars, but on paper.
In 1,953 a book was published that predicted plans for an “Elon” to take humans to Mars.
The first flight of NASA’s Space Launch System (SLS) rocket and Orion spacecraft will not have a crew of astronauts on board, but there are several experienced teams of people behind the mission to ensure the success of the first SLS launch and Orion’s first trip around the Moon.
Donor-derived anti-CD7 chimeric antigen receptor (CAR) T-cell therapy led to complete responses in 18 of 20 patients with relapsed or refractory (r/r) T-cell acute lymphoblastic (ALL), a first-in-human clinical trial showed.
After a median follow-up of 6.3 months, 15 of the 18 responding patients remained in remission, and seven patients had undergone stem-cell transplantation (SCT). All patients developed cytokine release syndrome (CRS), which was grade 1/2 in most instances. Because the therapy involved unmanipulated T cells, a majority of patients developed graft-versus-host disease (GVHD), grade 1/2 severity in all cases. All of the patients developed severe cytopenias, which were manageable.
The results provided the basis for an ongoing phase II trial of the donor-derived anti-CD7 therapy, reported Jing Pan, MD, of the State Key Laboratory of Experimental Hematology and Beijing Boren Hospital in China, and colleagues in the Journal of Clinical Oncology.
Flying a thrust-vectoring rocket can be a challenge, and even more so if you stack multiple stages and a minimalist flight computer on top of it all. But [Joe Barnard] is not one to shy away from such a challenge, so he built a three stage actively guided rocket named Shreeek.
[Joe] is well known for his thrust-vectoring rockets, some of which have came within a hair’s breadth of making a perfect powered landing. Previous rockets have used larger, more complex flight computers, but for this round, he wanted to go as small and minimalist as possible. Each stage of the rocket has its own tiny 16 × 17 mm flight computer and battery. The main components are a SAM21 microcontroller running Arduino firmware, an IMU for altitude and orientation sensing, and a FET to trigger the rocket motor igniter. It also has servo outputs for thrust vector control (TVC), and motor control output for the reaction wheel on the third stage for roll control. To keep it simple he omitted a way to log flight data, a decision he later regretted. Shreeek did not have a dedicated recovery system on any of the stages, instead relying on its light weight and high drag to land intact.
None of the four launch attempts went as planned, with only the first two stages functioning correctly in the test with the best results. Thanks to the lack of recorded flight data, [Joe] had to rely on video footage alone to diagnose the problems after each launch. Even so, his experience diagnosing problems certainly proved its worth, with definitive improvements. However, we suspect that all his future flight computers will have data logging features included.