Menu

Blog

Page 6286

Jul 20, 2020

Scientists strengthen quantum building blocks in milestone critical for scale-up

Posted by in categories: computing, quantum physics

A group of international scientists have substantially lengthened the duration of time that a spin-orbit qubit in silicon can retain quantum information for, opening up a new pathway to make silicon quantum computers more scalable and functional.

Spin-orbit qubits have been investigated for over a decade as an option to scale up the number of qubits in a quantum computer, as they are easy to manipulate and couple over long distances. However, they have always shown very limited times, far too short for quantum technologies.

The research published today in Nature Materials shows that long coherence times are possible when spin-orbit coupling is strong enough. In fact, the scientists demonstrated coherence times 10,000 times longer than previously recorded for spin-orbit qubits, making them an ideal candidate for scaling up silicon quantum computers.

Jul 20, 2020

New Stem Cell Treatment Using Fat Cells Could Repair Any Tissue in The Body

Posted by in category: biotech/medical

Circa 2016


In a world first, Australian scientists have figured out how to reprogram adult bone or fat cells to form stem cells that could potentially regenerate any damaged tissue in the body.

Continue reading “New Stem Cell Treatment Using Fat Cells Could Repair Any Tissue in The Body” »

Jul 20, 2020

Physicists take stop-action images of light-driven molecular reaction

Posted by in categories: biotech/medical, chemistry

Kansas State University physicists have taken extremely fast snapshots of light-induced molecular ring-opening reactions—similar to those that help a human body produce vitamin D from sunlight. The research is published in Nature Chemistry.

“Think of this as stop-motion like a cartoon,” said Daniel Rolles, associate professor of physics and the study’s principal investigator. “For each molecule, you start the reaction with a laser pulse, take snapshots of what it looks like as time passes and then put them together. This creates a ‘molecular movie’ that shows how the electronic structure of the molecule changes as a function of how much time passes between when we start and when we stop.”

Shashank Pathak, doctoral student and lead author on the paper, said the idea was to study the dynamics of how a ring opens in a molecule on the time scale of femtosecond, which is one quadrillionth of a second. The researchers use a to visualize how these reactions happen by recording electron energy spectra as the atoms in the molecule move apart.

Jul 20, 2020

Tuscon Electric Power Makes Dramatic Pivot Toward Renewable Energy

Posted by in categories: energy, sustainability

Remember just 2 years ago when the utility companies that supply electricity to customers in Arizona went into a tizzy over a ballot initiative that would mandate them to get 50% of their electricity from renewable sources by the year 2030? Oh, the weeping and wailing and gnashing of teeth could be heard from sea to shining sea. It was a direct frontal assault on the American way of life. It was so dire, the utilities ponied up $40 million of their own money (actually it was their customers’ money) to defeat it.

Jul 20, 2020

Scientists discover volcanoes on Venus are still active

Posted by in categories: geology, space

A new study identified 37 recently active volcanic structures on Venus. The study provides some of the best evidence yet that Venus is still a geologically active planet. A research paper on the work, which was conducted by researchers at the University of Maryland and the Institute of Geophysics at ETH Zurich, Switzerland, was published in the journal Nature Geoscience on July 20, 2020.

“This is the first time we are able to point to specific structures and say ‘Look, this is not an ancient volcano but one that is active today, dormant perhaps, but not dead,’” said Laurent Montési, a professor of geology at UMD and co-author of the . “This study significantly changes the view of Venus from a mostly inactive planet to one whose interior is still churning and can feed many .”

Scientists have known for some time that Venus has a younger surface than like Mars and Mercury, which have cold interiors. Evidence of a warm interior and dots the surface of the planet in the form of ring-like structures known as , which form when plumes of hot material deep inside the planet rise through the mantle layer and crust. This is similar to the way mantle plumes formed the volcanic Hawaiian Islands.

Jul 20, 2020

Ultimate precision limit of multi-parameter quantum magnetometry

Posted by in category: quantum physics

Quantum magnetometry, one of the most important applications in quantum metrology, aims to measure the magnetic field with the highest precision. Although estimation of one component of a magnetic field has been well studied over many decades, the highest precision that can be achieved with entangled probe states for the estimation of all three components of a magnetic field remains uncertain.

In particular, the specific questions include how to balance the precision tradeoff among different parameters, what is the ultimate precision, can this precision limit be achieved, and how to achieve it.

Under the lead of Prof. Guo Guangcan, Prof. Li Chuanfeng and Prof. Xiang Guoyong from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences, together with Prof. Yuan Haidong from the Chinese University of Hong Kong, obtained the ultimate precision for the of all three components of a with entangled probe states under the parallel scheme. The study was published online in Physical Review Letters.

Jul 20, 2020

Proteus becomes the world’s first manufactured non-cuttable material

Posted by in categories: particle physics, transportation

Researchers from the UK’s Durham University and Germany’s Fraunhofer Institute claim they’ve come up with the world’s first manufactured non-cuttable material, just 15 percent the density of steel, which they say could make for indestructible bike locks and lightweight armor.

The material, named Proteus, uses ceramic spheres in a cellular aluminum structure to foil angle grinders, drills and the like by creating destructive vibrations that blunt any cutting tools used against it. The researchers took inspiration from the tough, cellular skin of grapefruit and the hard, fracture-resistant aragonite shells of molluscs in their creation of the Proteus design.

Continue reading “Proteus becomes the world’s first manufactured non-cuttable material” »

Jul 20, 2020

Review: Once Upon a Time I Lived on Mars

Posted by in categories: food, robotics/AI, space

Once Upon a Time I Lived on Mars: Space, Exploration, and Life on Earth by Kate Greene St. Martin’s Press, 2020 hardcover, 240 pp. ISBN 978−1−250−15947−2 US$27.

While the robotic missions launching to Mars this year have a wide range of science goals, they are widely seen as precursors for eventual human missions to the Red Planet. NASA’s Mars 2020 mission includes an experiment called MOXIE that will demonstrate a way to produce oxygen from the carbon dioxide in the Martian atmosphere, a capability that will be essential for future human expeditions. NASA’s fiscal year 2021 budget proposal included a request to start work on a Mars Ice Mapper mission, an orbiter that would search for subsurface ice deposits that could be resources for future human expeditions.

Much of the planning for future Mars missions is focused on various capabilities needed to safely transport humans to the surface of Mars and bring them back. But beyond technologies like in situ resource utilization and supersonic retropropulsion are more mundane, but no less essential, matters: How will the crew eat? How will they deal with boredom on the long mission? How will they get along with one another in a confined space?

Jul 20, 2020

Powerful human-like hands create safer human-robotics interactions

Posted by in category: robotics/AI

Need a robot with a soft touch? A team of Michigan State University engineers has designed and developed a novel humanoid hand that may be able to help.

In industrial settings, robots often are used for tasks that require repetitive grasping and manipulation of objects. The end of a robot where a human hand would be found is known as an end effector or gripper.

“The novel humanoid hand design is a soft-hard hybrid flexible gripper. It can generate larger grasping than a traditional pure soft hand, and simultaneously be more stable for accurate manipulation than other counterparts used for heavier objects,” said lead author Changyong Cao, director of the Laboratory for Soft Machines and Electronics at MSU and assistant professor in Packaging, Mechanical Engineering, and Electrical and Computer Engineering.

Jul 20, 2020

Scientists boost stability and efficiency of next-gen solar tech

Posted by in category: materials

Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have created next-generation solar modules with high efficiency and good stability. Made using perovskites, these solar modules can maintain high performance for over 2000 hours. Their findings, reported 20 July 2020 in Nature Energy, have brightened prospects of commercialization.

Perovskites have the potential to revolutionize the solar technology industry. Flexible and lightweight, they promise more versatility than the heavy and rigid silicon-based cells currently dominating the market. But scientists must overcome some major hurdles before perovskites can be commercialized.

“There are three conditions that perovskites must meet: They must be cheap to produce, highly efficient and have a long lifespan,” said Professor Yabing Qi, head of the OIST Energy Materials and Surface Sciences Unit, who led this study.