Toggle light / dark theme

The group’s detector design exploits Cherenkov radiation, a phenomenon in which radiation is emitted when charged particles moving faster than light pass through a particular medium, akin to when crossing the sound barrier. This is also responsible for nuclear reactors’ eerie blue glow and has been used to detect neutrinos in astrophysics laboratories.

The researchers proposed to assemble their device in northeast England and detect antineutrinos from reactors from all over the U.K. as well as in northern France.

One issue, however, is that antineutrinos from the and space can muddle the signal, especially as very distant reactors yield exceedingly small signals—sometimes on the order of a single antineutrino per day.

A new model accounts for a wide range of ion-electrode interactions and predicts a device’s ability to store electric charge. The model’s theoretical predictions align with the experimental results. Data on the behavior of the electric double layer (EDL) can aid in the development of more efficient supercapacitors for portable electronics and electric vehicles. The study has been published in ChemPhysChem.

Researchers have developed a new type of bifocal lens that offers a simple way to achieve two foci (or spots) with intensities that can be adjusted by applying external voltage. The lenses, which use two layers of liquid crystal structures, could be useful for various applications such as optical interconnections, biological imaging, augmented/virtual reality devices and optical computing.

Their research is published in the Journal of Lightwave Technology.

“We tackled the persistent issue of balancing spatial resolution and measurement range in our original fiber-optic distributed strain sensing technique called BOCDR,” said Associate Professor Yosuke Mizuno of Yokohama National University. “Our purpose was to develop a more efficient system that overcomes this trade-off without relying on complex components like variable delay lines.”

The conventional BOCDR technique offers advantages such as operation with light injection from one end of the sensing fiber, relatively , and random-access capability to sensing points. However, it also faces trade-offs between spatial resolution and measurement range. Previous efforts to mitigate this issue have included special schemes, such as temporal gating, double modulation, and chirp modulation.

As artificial intelligence advances, its uses and capabilities in real-world applications continue to reach new heights that may even surpass human expertise.


Official website for Osaka Metropolitan University. Established in 2022 through the merger of Osaka City University and Osaka Prefecture University.

Decreasing the number of dimensions from three to two to one dramatically influences the physical behaviour of a system, causing different states of matter to emerge. In recent years, physicists have been using optical quantum gases to study this phenomenon.

In the new study, conducted in the framework of the collaborative research centre OSCAR, a team led by Frank Vewinger of the Institute of Applied Physics (IAP) at the University of Bonn looked at how the behaviour of a photon gas changed as it went from being 2D to 1D. The researchers prepared the 2D gas in an optical microcavity, which is a structure in which light is reflected back and forth between two mirrors. The cavity was filled with dye molecules. As the photons repeatedly interact with the dye, they cool down and the gas eventually condenses into an extended quantum state called a Bose–Einstein condensate.

Researchers from the Color and Food Quality group at the Faculty of Pharmacy, University of Seville, in partnership with Dr. Marina Ezcurra’s team at the University of Kent (UK), have demonstrated that the carotenoid phytoene extends the lifespan of the nematode Caenorhabditis elegans. Additionally, it delays the onset of paralysis linked to amyloid plaque formation in an Alzheimer’s disease model.

Specifically, increases in longevity of between 10 and 18.6% and decreases in the proteotoxic effect of plaques of between 30 and 40% were observed. The studies, which form part of Ángeles Morón Ortiz’s doctoral thesis, tested pure phytoene and extracts rich in this carotenoid obtained from microalgae.

According to Dr. Paula Mapelli Brahm, “These are very exciting preliminary results, so we are looking for funding to continue this line of research and to find out by what mechanisms these effects are produced.”