Menu

Blog

Page 6216

Sep 4, 2020

Correcting anode-free cell failure to enable higher-energy-density batteries

Posted by in categories: chemistry, energy, sustainability, transportation

Batteries with high energy densities could enable the creation of a wider range of electric vehicles, including flying vehicles that can transport humans in urban environments. Past studies predict that to support the operation of vehicles capable of take-off and landing, batteries require energy densities of approximately 400 Wh kg-1 at the cell level, which is approximately 30% higher than the energy density of most existing lithium-ion (Li-ion) cells.

In addition to powering flying vehicles, high-energy (i.e., single units within a battery that convert chemical into ) could increase the distance that electric cars can travel before they need to be charged again. They may also reduce overall fabrication costs for electric vehicles, as similar results could be achieved using fewer but better-performing cells.

Anode-free lithium metal cells are particularly promising for creating batteries with higher energy densities. While they use the same cathode as Li-ion cells, these cells store energy via an electroplated lithium metal instead of a graphite host, and they can have energy densities that are 60% greater than those of Li-ion cells.

Sep 4, 2020

Decades-old mystery of lithium-ion battery storage solved

Posted by in categories: chemistry, mobile phones, sustainability, transportation

For years, researchers have aimed to learn more about a group of metal oxides that show promise as key materials for the next generation of lithium-ion batteries because of their mysterious ability to store significantly more energy than should be possible. An international research team, co-led by The University of Texas at Austin, has cracked the code of this scientific anomaly, knocking down a barrier to building ultra-fast battery energy storage systems.

The team found that these possess unique ways to store energy beyond classic electrochemical mechanisms. The research, published in Nature Materials, found several types of compounds with up to three times the energy storage capability compared with materials common in today’s commercially available lithium-ion batteries.

By decoding this mystery, the researchers are helping unlock batteries with greater energy capacity. That could mean smaller, more powerful batteries able to rapidly deliver charges for everything from smartphones to electric vehicles.

Sep 4, 2020

Battery-free Game Boy runs forever

Posted by in categories: computing, entertainment

A hand-held video game console allowing indefinite gameplay might be a parent’s worst nightmare.

But this Game Boy is not just a toy. It’s a powerful proof-of-concept, developed by researchers at Northwestern University and the Delft University of Technology (TU Delft) in the Netherlands, that pushes the boundaries of battery-free intermittent computing into the realm of fun and interaction.

Continue reading “Battery-free Game Boy runs forever” »

Sep 4, 2020

Qualcomm 5G mmWave call breaks distance record

Posted by in categories: innovation, mobile phones

Qualcomm Technologies announced Monday that it conducted the first successful extended range 5G data call over mmWave.

Range has been a key obstacle for cellphone carriers as they move to mmWave technology to take advantage of faster 5G speeds. Qualcomm’s breakthrough could speed up deployment of 5G smartphones.

Qualcomm reported that it conducted a 5G call over a 2.36 mile distance, double the distance that it had projected when it unveiled its new antenna system last year. Qualcomm worked with Casa Systems, an ultra-broadband provider, and Ericsson, the multinational telecommunications company, on the project.

Sep 4, 2020

New understanding of electrolyte additives will improve dye-sensitised solar cells

Posted by in categories: computing, mobile phones, solar power, sustainability

Dye-sensitized solar cells used in low-light conditions could perform more consistently thanks to improved understanding of the role additives play in optimizing electrolytes.

Laptops and mobile phones, among other devices, could be charged or powered indoors, away from direct sunlight, using dye-sensitized solar (DSCs), which have achieved efficiencies of up to 34% at 1000 lux from a fluorescent lamp.

Copper-based electrolytes containing various combinations of additives have been used to achieve these efficiencies, with varying results to date.

Sep 4, 2020

US gives first-ever OK for small commercial nuclear reactor

Posted by in category: nuclear energy

U.S. officials have for the first time approved a design for a small commercial nuclear reactor, and a Utah energy cooperative wants to build 12 of them in Idaho.

The U.S. Nuclear Regulatory Commission on Friday approved Portland-based NuScale Power’s application for the small modular that Utah Associated Municipal Power Systems plans to build at a U.S. Department of Energy site in eastern Idaho.

The small reactors can produce about 60 megawatts of energy, or enough to power more than 50,000 homes. The proposed project includes 12 small modular reactors. The first would be built in 2029, with the rest in 2030.

Sep 4, 2020

Insights into the structure and function of Est3 from the Hansenula polymorpha telomerase

Posted by in categories: biotech/medical, life extension

Telomerase is a ribonucleoprotein enzyme, which maintains genome integrity in eukaryotes and ensures continuous cellular proliferation. Telomerase holoenzyme from the thermotolerant yeast Hansenula polymorpha, in addition to the catalytic subunit (TERT) and telomerase RNA (TER), contains accessory proteins Est1 and Est3, which are essential for in vivo telomerase function. Here we report the high-resolution structure of Est3 from Hansenula polymorpha (HpEst3) in solution, as well as the characterization of its functional relationships with other components of telomerase. The overall structure of HpEst3 is similar to that of Est3 from Saccharomyces cerevisiae and human TPP1. We have shown that telomerase activity in H. polymorpha relies on both Est3 and Est1 proteins in a functionally symmetrical manner. The absence of either Est3 or Est1 prevents formation of a stable ribonucleoprotein complex, weakens binding of a second protein to TER, and decreases the amount of cellular TERT, presumably due to the destabilization of telomerase RNP. NMR probing has shown no direct in vitro interactions of free Est3 either with the N-terminal domain of TERT or with DNA or RNA fragments mimicking the probable telomerase environment. Our findings corroborate the idea that telomerase possesses the evolutionarily variable functionality within the conservative structural context.

Sep 4, 2020

New evidence that the quantum world is even stranger than we thought

Posted by in categories: computing, particle physics, quantum physics

New experimental evidence of a collective behavior of electrons to form “quasiparticles” called “anyons” has been reported by a team of scientists at Purdue University.

Anyons have characteristics not seen in other , including exhibiting fractional charge and fractional statistics that maintain a “memory” of their interactions with other quasiparticles by inducing quantum mechanical phase changes.

Postdoctoral research associate James Nakamura, with assistance from research group members Shuang Liang and Geoffrey Gardner, made the discovery while working in the laboratory of professor Michael Manfra is a Distinguished Professor of Physics and Astronomy, Purdue’s Bill and Dee O’Brien Chair Professor of Physics and Astronomy, professor of electrical and computer engineering, and professor of materials engineering. Although this work might eventually turn out to be relevant to the development of a quantum computer, for now, Manfra said, it is to be considered an important step in understanding the physics of quasiparticles.

Sep 4, 2020

Artificial intelligence creates better, faster MRI scans

Posted by in categories: biotech/medical, robotics/AI

When a patient climbs into an MRI scanner, it peers inside their body to reveal the complex anatomy within, like the ligaments and tendons in a knee.

Sep 4, 2020

Google appears to be working on a COVID-19 outbreak overlay for Maps

Posted by in category: biotech/medical

Google has been placing COVID-19 reminders, warnings, and information in many of its services for some time now. You can’t use a Google service without being reminded to wear a mask, or of where to go for screening. It’s even added various tips to Maps, including where to get takeout during the pandemic. With a possible new overlay feature, it looks like we might soon be able to add Google Maps to our list of COVID tracing apps.

Jane Wong has shared screenshots she was able to trigger in Maps, showcasing the new feature. The pictures detail the COVID-19 tracking option alongside the other map overlays, like Traffic and Transit. The feature apparently sources data from Wikipedia, The New York Times, Johns Hopkins University, and Brihanmumbai Municipal Corporation. Using this information, the overlay colors impacted states, countries, and their borders. The map also displays whether the current numbers for each area are increasing or decreasing.